State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China; Shandong Institute of Petroleum and Chemical Technology, Carbon Neutrality Research Institute, Dongying 257061, China.
State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China.
Sci Total Environ. 2024 Dec 1;954:176303. doi: 10.1016/j.scitotenv.2024.176303. Epub 2024 Sep 18.
The use of bio-based composites to enhance the methane production in anaerobic digestion has attracted considerable attention. Nevertheless, the study of electron transfer mechanisms and the applications of biochar/MnO (MBC) in complex systems remains largely unexplored. Biochar composited with MnO at 10:1 mass ratio (MBC10) increased the content of volatile fatty acids by 9.09 % during acidogenic phase. During the methanogenic experiments using acetate, cumulative methane production (CMP) rose by 5.83 %, and in the methanogenic experiments using food waste, CMP increased by 24.32 %. Microbial community analysis indicated an enrichment of Syntrophomonas, Bacilli, and Methanosaetaceae in the MBC10 group. This enrichment occurred mainly due to the redox capability of MnO enhancing MBC capacitance, thereby facilitating microbial electron transfer processes. Additionally, under 2 g/L ammonia nitrogen concentration and 30 g/L organic load, the CMP of MBC10 increased by 12.74 % and 9.44 %, respectively, compared to the BC600 group. This study illuminates MBC's electron transfer mechanisms and applications, facilitating its wider practical adoption and fostering future innovations.
利用生物基复合材料来提高厌氧消化中的甲烷产量已经引起了广泛关注。然而,电子传递机制的研究以及生物炭/二氧化锰(MBC)在复杂体系中的应用仍然很大程度上未被探索。在 10:1 质量比下复合 MnO 的生物炭(MBC10)在产酸阶段将挥发性脂肪酸的含量提高了 9.09%。在使用乙酸进行产甲烷实验中,累计甲烷产量(CMP)增加了 5.83%,而在使用食物废物进行产甲烷实验中,CMP 增加了 24.32%。微生物群落分析表明,MBC10 组中富集了互营单胞菌属、芽孢杆菌属和甲烷八叠球菌科。这种富集主要归因于 MnO 的氧化还原能力增强了 MBC 的电容,从而促进了微生物的电子传递过程。此外,在氨氮浓度为 2g/L 和有机负荷为 30g/L 的条件下,与 BC600 组相比,MBC10 的 CMP 分别增加了 12.74%和 9.44%。本研究阐明了 MBC 的电子传递机制和应用,促进了其更广泛的实际应用和未来的创新。