Suppr超能文献

亲环素 D,调节线粒体通透性转换,影响骨骼发育和骨折修复。

Cyclophilin D, regulator of the mitochondrial permeability transition, impacts bone development and fracture repair.

机构信息

Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, USA.

Department of Biology, University of Rochester, Rochester, NY 14642, USA.

出版信息

Bone. 2024 Dec;189:117258. doi: 10.1016/j.bone.2024.117258. Epub 2024 Sep 18.

Abstract

Mitochondrial Permeability Transition Pore (MPTP) and its key positive regulator, Cyclophilin D (CypD), control activity of cell oxidative metabolism important for differentiation of stem cells of various lineages including osteogenic lineage. Our previous work (Sautchuk et al., 2022) showed that CypD gene, Ppif, is transcriptionally repressed during osteogenic differentiation by regulatory Smad transcription factors in BMP canonical pathway, a major driver of osteoblast (OB) differentiation. Such a repression favors closure of the MPTP, priming OBs to higher usage of mitochondrial oxidative metabolism. The physiological role of CypD/MPTP regulation was demonstrated by its inverse correlation with BMP signaling in aging and bone fracture healing in addition to the negative effect of CypD gain-of-function (GOF) on bone maintenance. Here we show evidence that CypD GOF also negatively affects bone development and growth as well as fracture healing in adult mice. Developing craniofacial and long bones presented with delayed ossification and decreased growth rate, respectively, whereas in fracture, bony callus volume was diminished. Given that Genome Wide Association Studies showed that PPIF locus is associated with both body height and bone mineral density, our new data provide functional evidence for the role of PPIF gene product, CypD, and thus MPTP in bone growth and repair.

摘要

线粒体通透性转换孔 (MPTP) 及其关键正调节剂亲环素 D (CypD) 控制着细胞氧化代谢的活性,这对于包括成骨谱系在内的各种谱系干细胞的分化很重要。我们之前的工作 (Sautchuk 等人,2022 年) 表明,CypD 基因 Ppif 在成骨分化过程中受到 BMP 经典途径中的调节 Smad 转录因子的转录抑制,BMP 经典途径是成骨细胞 (OB) 分化的主要驱动因素。这种抑制有利于 MPTP 的关闭,使 OB 更倾向于使用线粒体氧化代谢。CypD/MPTP 调节的生理作用通过其与 BMP 信号在衰老和骨骨折愈合中的反比关系得到证实,此外 CypD 功能获得 (GOF) 对骨维持的负面影响也得到证实。在这里,我们证明 CypD GOF 也会对成年小鼠的骨骼发育和生长以及骨折愈合产生负面影响。颅面和长骨的发育呈现出骨化延迟和生长速度减慢的情况,而在骨折中,骨痂体积减少。鉴于全基因组关联研究表明 PPIF 基因座与身高和骨密度都有关,我们的新数据为 PPIF 基因产物 CypD 以及因此 MPTP 在骨骼生长和修复中的作用提供了功能证据。

相似文献

1
2
Mitochondrial permeability transition regulator, cyclophilin D, is transcriptionally activated by C/EBP during adipogenesis.
J Biol Chem. 2023 Dec;299(12):105458. doi: 10.1016/j.jbc.2023.105458. Epub 2023 Nov 8.
4
Role of the Mitochondrial Permeability Transition in Bone Metabolism and Aging.
J Bone Miner Res. 2023 Apr;38(4):522-540. doi: 10.1002/jbmr.4787. Epub 2023 Mar 9.
6
Cyclophilin D plays a critical role in the survival of senescent cells.
EMBO J. 2024 Dec;43(23):5972-6000. doi: 10.1038/s44318-024-00259-2. Epub 2024 Oct 24.
7
Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore.
J Biol Chem. 2011 Nov 18;286(46):40184-92. doi: 10.1074/jbc.M111.243469. Epub 2011 Sep 19.
8
CypD-mPTP axis regulates mitochondrial functions contributing to osteogenic dysfunction of MC3T3-E1 cells in inflammation.
J Physiol Biochem. 2018 Aug;74(3):395-402. doi: 10.1007/s13105-018-0627-z. Epub 2018 Apr 20.
10
Role of the PGAM5-CypD mitochondrial pathway in methylglyoxal-induced bone loss in diabetic osteoporosis.
Bone. 2025 Jan;190:117322. doi: 10.1016/j.bone.2024.117322. Epub 2024 Nov 5.

本文引用的文献

1
Mitochondrial permeability transition regulator, cyclophilin D, is transcriptionally activated by C/EBP during adipogenesis.
J Biol Chem. 2023 Dec;299(12):105458. doi: 10.1016/j.jbc.2023.105458. Epub 2023 Nov 8.
2
Mitochondrial Genetics and Function as Determinants of Bone Phenotype and Aging.
Curr Osteoporos Rep. 2023 Oct;21(5):540-551. doi: 10.1007/s11914-023-00816-4. Epub 2023 Aug 5.
3
Role of the Mitochondrial Permeability Transition in Bone Metabolism and Aging.
J Bone Miner Res. 2023 Apr;38(4):522-540. doi: 10.1002/jbmr.4787. Epub 2023 Mar 9.
4
Cell energy metabolism and bone formation.
Bone Rep. 2022 May 27;16:101594. doi: 10.1016/j.bonr.2022.101594. eCollection 2022 Jun.
8
Energy Metabolism During Osteogenic Differentiation: The Role of Akt.
Stem Cells Dev. 2021 Feb;30(3):149-162. doi: 10.1089/scd.2020.0141. Epub 2021 Jan 11.
9
Inhibition of the mitochondrial permeability transition improves bone fracture repair.
Bone. 2020 Aug;137:115391. doi: 10.1016/j.bone.2020.115391. Epub 2020 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验