Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA.
Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
J Bone Miner Res. 2023 Apr;38(4):522-540. doi: 10.1002/jbmr.4787. Epub 2023 Mar 9.
The mitochondrial permeability transition pore (MPTP) and its positive regulator, cyclophilin D (CypD), play important pathophysiological roles in aging. In bone tissue, higher CypD expression and pore activity are found in aging; however, a causal relationship between CypD/MPTP and bone degeneration needs to be established. We previously reported that CypD expression and MPTP activity are downregulated during osteoblast (OB) differentiation and that manipulations in CypD expression affect OB differentiation and function. Using a newly developed OB-specific CypD/MPTP gain-of-function (GOF) mouse model, we here present evidence that overexpression of a constitutively active K166Q mutant of CypD (caCypD) impairs OB energy metabolism and function, and bone morphological and biomechanical parameters. Specifically, in a spatial-dependent and sex-dependent manner, OB-specific CypD GOF led to a decrease in oxidative phosphorylation (OxPhos) levels, higher oxidative stress, and general metabolic adaptations coincident with the decreased bone organic matrix content in long bones. Interestingly, accelerated bone degeneration was present in vertebral bones regardless of sex. Overall, our work confirms CypD/MPTP overactivation as an important pathophysiological mechanism leading to bone degeneration and fragility in aging. © 2023 American Society for Bone and Mineral Research (ASBMR).
线粒体通透性转换孔 (MPTP) 及其正调节剂亲环素 D (CypD) 在衰老过程中发挥着重要的病理生理作用。在骨组织中,衰老时 CypD 的表达和孔活性更高;然而,需要建立 CypD/MPTP 与骨退化之间的因果关系。我们之前报道过 CypD 表达和 MPTP 活性在成骨细胞 (OB) 分化过程中下调,并且 CypD 表达的操纵会影响 OB 分化和功能。使用新开发的 OB 特异性 CypD/MPTP 功能获得 (GOF) 小鼠模型,我们在此提供证据表明,过表达组成型活性 K166Q 突变型 CypD (caCypD) 会损害 OB 的能量代谢和功能,以及骨形态和生物力学参数。具体来说,以空间依赖性和性别依赖性的方式,OB 特异性 CypD GOF 导致氧化磷酸化 (OxPhos) 水平降低、氧化应激增加和一般代谢适应,同时长骨中的骨有机基质含量降低。有趣的是,无论性别如何,椎体中的骨退化都加速了。总的来说,我们的工作证实了 CypD/MPTP 的过度激活是导致衰老过程中骨退化和脆弱的重要病理生理机制。© 2023 美国骨骼矿物质研究协会 (ASBMR)。