Suppr超能文献

当时间至关重要时:对时间敏感环境下可解释人工智能的伦理再思考。

When time is of the essence: ethical reconsideration of XAI in time-sensitive environments.

作者信息

Wabro Andreas, Herrmann Markus, Winkler Eva C

机构信息

National Center for Tumor Diseases (NCT) Heidelberg, NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Germany, Heidelberg University, Medical Faculty Heidelberg, Heidelberg University Hospital, Department of Medical Oncology, Section Translational Medical Ethics, Heidelberg, Germany

National Center for Tumor Diseases (NCT) Heidelberg, NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Germany, Heidelberg University, Medical Faculty Heidelberg, Heidelberg University Hospital, Department of Medical Oncology, Section Translational Medical Ethics, Heidelberg, Germany.

出版信息

J Med Ethics. 2025 Jul 23;51(8):516-520. doi: 10.1136/jme-2024-110046.

Abstract

The objective of explainable artificial intelligence systems designed for clinical decision support (XAI-CDSS) is to enhance physicians' diagnostic performance, confidence and trust through the implementation of interpretable methods, thus providing for a superior epistemic positioning, a robust foundation for critical reflection and trustworthiness in times of heightened technological dependence. However, recent studies have revealed shortcomings in achieving these goals, questioning the widespread endorsement of XAI by medical professionals, ethicists and policy-makers alike. Based on a surgical use case, this article challenges generalising calls for XAI-CDSS and emphasises the significance of time-sensitive clinical environments which frequently preclude adequate consideration of system explanations. Therefore, XAI-CDSS may not be able to meet expectations of augmenting clinical decision-making in specific circumstances where time is of the essence. This article, by employing a principled ethical balancing methodology, highlights several fallacies associated with XAI deployment in time-sensitive clinical situations and recommends XAI endorsement only where scientific evidence or stakeholder assessments do not contradict such deployment in specific target settings.

摘要

为临床决策支持设计的可解释人工智能系统(XAI-CDSS)的目标是,通过实施可解释方法来提高医生的诊断性能、信心和信任度,从而在技术依赖程度不断提高的时代,提供更高的认知定位、批判性反思的坚实基础和可信度。然而,最近的研究揭示了在实现这些目标方面存在的不足,这使得医学专业人员、伦理学家和政策制定者对XAI的广泛认可受到质疑。基于一个外科用例,本文对普遍呼吁使用XAI-CDSS提出质疑,并强调了时间敏感型临床环境的重要性,这种环境常常使人们无法充分考虑系统解释。因此,在时间至关重要的特定情况下,XAI-CDSS可能无法满足增强临床决策的期望。本文采用一种有原则的伦理平衡方法,突出了在时间敏感型临床情况下与XAI部署相关的几个谬误,并建议仅在科学证据或利益相关者评估不与特定目标环境中的此类部署相矛盾时,才认可XAI。

相似文献

1
When time is of the essence: ethical reconsideration of XAI in time-sensitive environments.
J Med Ethics. 2025 Jul 23;51(8):516-520. doi: 10.1136/jme-2024-110046.
6
Systematic literature review on the application of explainable artificial intelligence in palliative care studies.
Int J Med Inform. 2025 Aug;200:105914. doi: 10.1016/j.ijmedinf.2025.105914. Epub 2025 Apr 8.
7
Decoding the black box: Explainable AI (XAI) for cancer diagnosis, prognosis, and treatment planning-A state-of-the art systematic review.
Int J Med Inform. 2025 Jan;193:105689. doi: 10.1016/j.ijmedinf.2024.105689. Epub 2024 Nov 4.
9
Interventions to improve safe and effective medicines use by consumers: an overview of systematic reviews.
Cochrane Database Syst Rev. 2014 Apr 29;2014(4):CD007768. doi: 10.1002/14651858.CD007768.pub3.

本文引用的文献

1
Transforming the cardiometabolic disease landscape: Multimodal AI-powered approaches in prevention and management.
Cell Metab. 2024 Apr 2;36(4):670-683. doi: 10.1016/j.cmet.2024.02.002. Epub 2024 Feb 29.
3
Toward the eradication of medical diagnostic errors.
Science. 2024 Jan 26;383(6681):eadn9602. doi: 10.1126/science.adn9602. Epub 2024 Jan 25.
4
Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma.
Nat Commun. 2024 Jan 15;15(1):524. doi: 10.1038/s41467-023-43095-4.
7
Explainable Artificial Intelligence and Cardiac Imaging: Toward More Interpretable Models.
Circ Cardiovasc Imaging. 2023 Apr;16(4):e014519. doi: 10.1161/CIRCIMAGING.122.014519. Epub 2023 Apr 12.
8
Explainable AI and Multi-Modal Causability in Medicine.
I Com (Berl). 2021 Jan 26;19(3):171-179. doi: 10.1515/icom-2020-0024. Epub 2021 Jan 15.
9
Surgical Rehearsal for Mitral Valve Repair: Personalizing Surgical Simulation by 3D Printing.
Ann Thorac Surg. 2023 Apr;115(4):1062-1067. doi: 10.1016/j.athoracsur.2022.12.039. Epub 2023 Jan 10.
10
Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer.
Nat Med. 2023 Feb;29(2):430-439. doi: 10.1038/s41591-022-02134-1. Epub 2023 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验