Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87106.
Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131.
eNeuro. 2024 Oct 3;11(10). doi: 10.1523/ENEURO.0248-24.2024. Print 2024 Oct.
Human and mouse dorsal root ganglia (hDRG and mDRG) neurons are important tools in understanding the molecular and electrophysiological mechanisms that underlie nociception and drive pain behaviors. One of the simplest differences in firing phenotypes is that neurons are single-firing (exhibit only one action potential) or multi-firing (exhibit 2 or more action potentials). To determine if single- and multi-firing hDRG neurons exhibit differences in intrinsic properties, firing phenotypes, and AP waveform properties, and if these properties could be used to predict multi-firing, we measured 22 electrophysiological properties by whole-cell patch-clamp electrophysiology of 94 hDRG neurons from six male and four female donors. We then analyzed the data using several machine learning models to determine if these properties could be used to predict multi-firing. We used 1,000 iterations of Monte Carlo cross-validation to split the data into different train and test sets and tested the logistic regression, -nearest neighbors, random forest, support vector classifier, and XGBoost machine learning models. All models tested had a >80% accuracy on average, with support vector classifier, and XGBoost performing the best. We found that several properties correlated with multi-firing hDRG neurons and together could be used to predict multi-firing neurons in hDRG including a long decay time, a low rheobase, and long first spike latency. We also found that the hDRG models were able to predict multi-firing with 90% accuracy in mDRG neurons. Understanding these properties could be beneficial in the elucidation of targets on peripheral sensory neurons related to pain.
人源和鼠源背根神经节(hDRG 和 mDRG)神经元是理解伤害感受和驱动疼痛行为的分子和电生理机制的重要工具。放电表型的最简单差异之一是神经元是单峰放电(仅表现出一个动作电位)或多峰放电(表现出 2 个或更多动作电位)。为了确定单峰和多峰 hDRG 神经元在内在特性、放电表型和动作电位波形特性方面是否存在差异,以及这些特性是否可用于预测多峰放电,我们使用全细胞膜片钳电生理学对来自 6 名男性和 4 名女性供体的 94 个 hDRG 神经元测量了 22 种电生理特性。然后,我们使用几种机器学习模型分析数据,以确定这些特性是否可用于预测多峰放电。我们使用 1000 次蒙特卡罗交叉验证迭代将数据分为不同的训练集和测试集,并测试了逻辑回归、-近邻、随机森林、支持向量分类器和 XGBoost 机器学习模型。所有测试的模型平均准确率都在 80%以上,其中支持向量分类器和 XGBoost 的表现最好。我们发现几个特性与多峰 hDRG 神经元相关,它们可以一起用于预测 hDRG 中的多峰放电神经元,包括长衰减时间、低兴奋阈和长第一峰潜伏期。我们还发现,hDRG 模型能够以 90%的准确率预测 mDRG 神经元中的多峰放电。了解这些特性可能有助于阐明与疼痛相关的外周感觉神经元的靶点。