Physics Department, George Washington University, Washington, DC, 20052, USA.
Sci Rep. 2024 Sep 19;14(1):21911. doi: 10.1038/s41598-024-72538-1.
Self-assembly is a key process in living systems-from the microscopic biological level (e.g. assembly of proteins into fibrils within biomolecular condensates in a human cell) through to the macroscopic societal level (e.g. assembly of humans into common-interest communities across online social media platforms). The components in such systems (e.g. macromolecules, humans) are highly diverse, and so are the self-assembled structures that they form. However, there is no simple theory of how such structures assemble from a multi-species pool of components. Here we provide a very simple model which trades myriad chemical and human details for a transparent analysis, and yields results in good agreement with recent empirical data. It reveals a new inhibitory role for biomolecular condensates in the formation of dangerous amyloid fibrils, as well as a kinetic explanation of why so many diverse distrust movements are now emerging across social media. The nonlinear dependencies that we uncover suggest new real-world control strategies for such multi-species assembly.
自组装是生命系统中的一个关键过程——从微观的生物水平(例如,在人类细胞内的生物分子凝聚物中,蛋白质组装成原纤维)到宏观的社会水平(例如,人类在在线社交媒体平台上组成共同利益的社区)。在这样的系统中,组件(例如,生物大分子、人类)是高度多样化的,它们形成的自组装结构也是如此。然而,对于如何从多种成分的多物种池中组装这样的结构,并没有一个简单的理论。在这里,我们提供了一个非常简单的模型,用透明的分析取代了无数的化学和人类细节,其结果与最近的经验数据吻合得很好。它揭示了生物分子凝聚物在形成危险的淀粉样纤维中的新的抑制作用,以及为什么现在社交媒体上出现了如此多的不同形式的不信任运动的动力学解释。我们发现的非线性依赖关系为这种多物种组装提供了新的现实世界控制策略。