Suppr超能文献

一个与茎尖分生组织相关的同源盒转录因子的动态调控网络调节玉米的植株结构。

A dynamic regulome of shoot-apical-meristem-related homeobox transcription factors modulates plant architecture in maize.

机构信息

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.

出版信息

Genome Biol. 2024 Sep 19;25(1):245. doi: 10.1186/s13059-024-03391-8.

Abstract

BACKGROUND

The shoot apical meristem (SAM), from which all above-ground tissues of plants are derived, is critical to plant morphology and development. In maize (Zea mays), loss-of-function mutant studies have identified several SAM-related genes, most encoding homeobox transcription factors (TFs), located upstream of hierarchical networks of hundreds of genes.

RESULTS

Here, we collect 46 transcriptome and 16 translatome datasets across 62 different tissues or stages from the maize inbred line B73. We construct a dynamic regulome for 27 members of three SAM-related homeobox subfamilies (KNOX, WOX, and ZF-HD) through machine-learning models for the detection of TF targets across different tissues and stages by combining tsCUT&Tag, ATAC-seq, and expression profiling. This dynamic regulome demonstrates the distinct binding specificity and co-factors for these homeobox subfamilies, indicative of functional divergence between and within them. Furthermore, we assemble a SAM dynamic regulome, illustrating potential functional mechanisms associated with plant architecture. Lastly, we generate a wox13a mutant that provides evidence that WOX13A directly regulates Gn1 expression to modulate plant height, validating the regulome of SAM-related homeobox genes.

CONCLUSIONS

The SAM-related homeobox transcription-factor regulome presents an unprecedented opportunity to dissect the molecular mechanisms governing SAM maintenance and development, thereby advancing our understanding of maize growth and shoot architecture.

摘要

背景

茎尖分生组织(SAM)是植物地上组织的起源,对植物的形态和发育至关重要。在玉米(Zea mays)中,功能丧失突变体研究已经确定了几个与 SAM 相关的基因,这些基因大多数编码同源盒转录因子(TFs),位于数百个基因的层次网络的上游。

结果

在这里,我们收集了来自玉米自交系 B73 的 62 个不同组织或阶段的 46 个转录组和 16 个翻译组数据集。我们构建了三个与 SAM 相关的同源盒亚家族(KNOX、WOX 和 ZF-HD)的 27 个成员的动态调控组,通过机器学习模型检测不同组织和阶段的 TF 靶标,结合 tsCUT&Tag、ATAC-seq 和表达谱。这个动态调控组展示了这些同源盒亚家族的独特结合特异性和共同因子,表明它们之间和内部存在功能分化。此外,我们组装了一个 SAM 动态调控组,说明了与植物结构相关的潜在功能机制。最后,我们生成了一个 wox13a 突变体,该突变体提供了证据表明 WOX13A 直接调节 Gn1 的表达来调节植物的高度,验证了与 SAM 相关的同源盒基因的调控组。

结论

与 SAM 相关的同源盒转录因子调控组为剖析维持和发育 SAM 的分子机制提供了前所未有的机会,从而增进了我们对玉米生长和茎结构的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f30/11411777/0b4eb7f9efe5/13059_2024_3391_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验