Suppr超能文献

Homology of kringle structures in urokinase and tissue-type plasminogen activator: the phylogeny with the related serine proteases.

作者信息

Takahashi K, Gojobori T, Naora H

出版信息

Cell Struct Funct. 1985 Sep;10(3):209-18. doi: 10.1247/csf.10.209.

Abstract

Twelve amino acid sequences of kringle-forming polypeptides were compiled from the known sequences of urokinase A-chain (human), a tissue-type plasminogen activator (human), prothrombin (human and bovine), and plasminogen (human). Their sequence homologies with maximum match were examined by a computer program. A homology alignment and graphic matrix analyses did show that they had a great degree of homology. All the cysteine residues responsible for the kringle structures of urokinase and the tissue-type plasminogen activator were confidently preserved as well as other proteins. A phylogenetic tree was then reconstructed, and the A- and S-chain of bovine and human prothrombins were accounted for the measurement of the evolutionary time span. It was found that urokinase had a larger time span, as much as 60 million years (MY), than the tissue-type plasminogen activator. A common ancestral element of the kringle-related serine proteases was placed at around 500 MY ago, as old as the diversion of the alpha- and beta-chains of hemoglobin. Thus, the kringle-families have undergone a substantial evolutionary divergence. Moreover, they can be subgrouped into three subfamilies: plasminogen activators, plasminogen, and prothrombin A-chains, the last being the most distantly diverged prothrombin S-chains.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验