Gebretsadik Abbay, Kefale Bontu, Sori Chaluma, Tsegaye Dereje, Ananda Murthy H C, Abebe Buzuayehu
Department of Applied Chemistry, Adama Science and Technology University 1888 Adama Ethiopia
School of Applied Sciences, Papua New Guinea University of Technology Lae Morobe Province 411 Papua New Guinea.
RSC Adv. 2024 Sep 18;14(41):29763-29773. doi: 10.1039/d4ra05989a.
Doped semiconductor heterostructures have superior properties compared to their components. In this study, we observed the synthesis of Cu-doped ZnO/Ag/CuO heterostructure with the presence of charge transfer and visible light-harvesting properties resulting from doping and heterojunction. The porous heterostructures were prepared using the bottom-up combustion (BUC) approach. This method generated porous heterostructures by eliminating gaseous by-products. X-ray diffraction (XRD) optimization revealed that the ideal conditions included 1.00 g of polyvinyl alcohol (PVA), a synthesis temperature of 50 °C, and a 1 hour calcination time. Introducing copper (Cu) into the zinc oxide (ZnO) lattice caused a high-angle shift in the XRD pattern peaks. High-resolution transmission electron microscopy (HRTEM) images and XRD patterns confirmed the formation of Cu-doped ZnO/Ag/CuO (c-zac) heterostructures. Elemental mapping analysis confirmed the even surface distribution of Ag metal. The c-zac heterostructures exhibited superior optoelectrical and charge transfer properties compared to single ZnO. The heterostructures demonstrated improved methylene blue (MB) dye degradation potential ( = 0.065 min) compared to single ZnO ( = 0.0041 min). This photocatalytic potential is attributed to enhanced light absorption and charge transfer properties. The extended visible light absorption resulted from CuO and Ag's surface plasmon resonance properties. The selected 15c-zac heterostructure also performed well in a reusability photocatalytic test, remaining effective until the 3 cycle. Consequently, this heterostructure holds promise for scaling up as a catalyst for environmental remediation.
与组成它们的成分相比,掺杂半导体异质结构具有优异的性能。在本研究中,我们观察到了Cu掺杂的ZnO/Ag/CuO异质结构的合成,其具有由掺杂和异质结产生的电荷转移和可见光捕获特性。使用自下而上的燃烧(BUC)方法制备了多孔异质结构。该方法通过消除气态副产物生成了多孔异质结构。X射线衍射(XRD)优化表明,理想条件包括1.00 g聚乙烯醇(PVA)、50℃的合成温度和1小时的煅烧时间。将铜(Cu)引入氧化锌(ZnO)晶格会导致XRD图谱峰发生高角度偏移。高分辨率透射电子显微镜(HRTEM)图像和XRD图谱证实了Cu掺杂的ZnO/Ag/CuO(c-zac)异质结构的形成。元素映射分析证实了Ag金属在表面的均匀分布。与单一ZnO相比,c-zac异质结构表现出优异的光电和电荷转移性能。与单一ZnO( = 0.0041分钟)相比,异质结构表现出更高的亚甲基蓝(MB)染料降解潜力( = 0.065分钟)。这种光催化潜力归因于增强的光吸收和电荷转移性能。扩展的可见光吸收是由CuO和Ag的表面等离子体共振特性导致的。所选的15c-zac异质结构在可重复使用的光催化测试中也表现良好,直到第3个循环仍保持有效。因此,这种异质结构有望扩大规模成为环境修复的催化剂。