Suppr超能文献

动态基因表达减轻裂解驱动的细菌癌症治疗中的突变逃逸

Dynamic Gene Expression Mitigates Mutational Escape in Lysis-Driven Bacteria Cancer Therapy.

作者信息

Liguori Filippo, Pellicciotta Nicola, Milanetti Edoardo, Xi Windemuth Sophia, Ruocco Giancarlo, Di Leonardo Roberto, Danino Tal

机构信息

Department of Physics, Sapienza University of Rome, Rome, Italy.

Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy.

出版信息

Biodes Res. 2024 Sep 19;6:0049. doi: 10.34133/bdr.0049. eCollection 2024.

Abstract

Engineered bacteria have the potential to deliver therapeutic payloads directly to tumors, with synthetic biology enabling precise control over therapeutic release in space and time. However, it remains unclear how to optimize therapeutic bacteria for durable colonization and sustained payload release. Here, we characterize nonpathogenic expressing the bacterial toxin Perfringolysin O (PFO) and dynamic strategies that optimize therapeutic efficacy. While PFO is known for its potent cancer cell cytotoxicity, we present experimental evidence that expression of PFO causes lysis of bacteria in both batch culture and microfluidic systems, facilitating its efficient release. However, prolonged expression of PFO leads to the emergence of a mutant population that limits therapeutic-releasing bacteria in a PFO expression level-dependent manner. We present sequencing data revealing the mutant takeover and employ molecular dynamics to confirm that the observed mutations inhibit the lysis efficiency of PFO. To analyze this further, we developed a mathematical model describing the evolution of therapeutic-releasing and mutant bacteria populations revealing trade-offs between therapeutic load delivered and fraction of mutants that arise. We demonstrate that a dynamic strategy employing short and repeated inductions of the gene better preserves the original population of therapeutic bacteria by mitigating the effects of mutational escape. Altogether, we demonstrate how dynamic modulation of gene expression can address mutant takeovers giving rise to limitations in engineered bacteria for therapeutic applications.

摘要

工程细菌有潜力将治疗性药物直接递送至肿瘤,合成生物学能够在空间和时间上精确控制治疗性药物的释放。然而,如何优化治疗性细菌以实现持久定植和持续的药物释放仍不清楚。在此,我们对表达细菌毒素产气荚膜梭菌溶素O(PFO)的非致病性细菌以及优化治疗效果的动态策略进行了表征。虽然PFO以其强大的癌细胞细胞毒性而闻名,但我们提供的实验证据表明,PFO的表达会导致细菌在分批培养和微流控系统中裂解,促进其有效释放。然而,PFO的长期表达会导致突变菌群的出现,该菌群以PFO表达水平依赖的方式限制治疗性释放细菌。我们展示了揭示突变菌接管情况的测序数据,并利用分子动力学证实观察到的突变会抑制PFO的裂解效率。为了进一步分析这一点,我们开发了一个数学模型来描述治疗性释放细菌和突变细菌群体的演变,揭示了所递送的治疗性负荷与出现的突变体比例之间的权衡。我们证明,采用对基因进行短期和重复诱导的动态策略,通过减轻突变逃逸的影响,能更好地保留治疗性细菌的原始群体。总之,我们展示了基因表达的动态调节如何应对突变菌接管问题,而突变菌接管会导致工程细菌在治疗应用中受到限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6fe/11411163/2553de18272a/bdr.0049.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验