文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Cellpose 2.0:如何训练自己的模型。

Cellpose 2.0: how to train your own model.

机构信息

Howard Hughes Medical Institute (HHMI) Janelia Research Campus, Ashburn, VA, USA.

出版信息

Nat Methods. 2022 Dec;19(12):1634-1641. doi: 10.1038/s41592-022-01663-4. Epub 2022 Nov 7.


DOI:10.1038/s41592-022-01663-4
PMID:36344832
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9718665/
Abstract

Pretrained neural network models for biological segmentation can provide good out-of-the-box results for many image types. However, such models do not allow users to adapt the segmentation style to their specific needs and can perform suboptimally for test images that are very different from the training images. Here we introduce Cellpose 2.0, a new package that includes an ensemble of diverse pretrained models as well as a human-in-the-loop pipeline for rapid prototyping of new custom models. We show that models pretrained on the Cellpose dataset can be fine-tuned with only 500-1,000 user-annotated regions of interest (ROI) to perform nearly as well as models trained on entire datasets with up to 200,000 ROI. A human-in-the-loop approach further reduced the required user annotation to 100-200 ROI, while maintaining high-quality segmentations. We provide software tools such as an annotation graphical user interface, a model zoo and a human-in-the-loop pipeline to facilitate the adoption of Cellpose 2.0.

摘要

用于生物分割的预训练神经网络模型可以为许多图像类型提供良好的开箱即用结果。然而,此类模型不允许用户根据特定需求调整分割样式,并且对于与训练图像差异很大的测试图像的性能可能会不理想。在这里,我们介绍了 Cellpose 2.0,这是一个新的软件包,其中包括各种预训练模型的集合,以及一个人机交互的快速原型设计新自定义模型的管道。我们表明,仅使用 500-1,000 个用户标注的感兴趣区域 (ROI) 就可以对在 Cellpose 数据集上预训练的模型进行微调,从而使其性能几乎与使用多达 200,000 个 ROI 训练的模型一样好。人机交互方法进一步将所需的用户注释减少到 100-200 ROI,同时保持高质量的分割。我们提供了软件工具,例如注释图形用户界面、模型动物园和人机交互管道,以促进 Cellpose 2.0 的采用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/b4800411d6b9/41592_2022_1663_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/21f348de19f4/41592_2022_1663_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/4b1c3bbc85f1/41592_2022_1663_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/6f1a31f079c0/41592_2022_1663_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/1be49dddd361/41592_2022_1663_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/6001904062b0/41592_2022_1663_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/8c32cd07140c/41592_2022_1663_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/b44bbab8d0a2/41592_2022_1663_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/b0c920889887/41592_2022_1663_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/6fb1949d45ae/41592_2022_1663_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/b4800411d6b9/41592_2022_1663_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/21f348de19f4/41592_2022_1663_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/4b1c3bbc85f1/41592_2022_1663_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/6f1a31f079c0/41592_2022_1663_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/1be49dddd361/41592_2022_1663_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/6001904062b0/41592_2022_1663_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/8c32cd07140c/41592_2022_1663_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/b44bbab8d0a2/41592_2022_1663_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/b0c920889887/41592_2022_1663_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/6fb1949d45ae/41592_2022_1663_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f5/9718665/b4800411d6b9/41592_2022_1663_Fig10_ESM.jpg

相似文献

[1]
Cellpose 2.0: how to train your own model.

Nat Methods. 2022-12

[2]
Cellpose: a generalist algorithm for cellular segmentation.

Nat Methods. 2021-1

[3]
Accurate automated segmentation of autophagic bodies in yeast vacuoles using cellpose 2.0.

Autophagy. 2024-9

[4]
DeepImageTranslator: A free, user-friendly graphical interface for image translation using deep-learning and its applications in 3D CT image analysis.

SLAS Technol. 2022-2

[5]
Usability of deep learning pipelines for 3D nuclei identification with Stardist and Cellpose.

Cells Dev. 2022-12

[6]
RootPainter: deep learning segmentation of biological images with corrective annotation.

New Phytol. 2022-10

[7]
Automated polyp segmentation for colonoscopy images: A method based on convolutional neural networks and ensemble learning.

Med Phys. 2019-10-31

[8]
Cellpose as a reliable method for single-cell segmentation of autofluorescence microscopy images.

bioRxiv. 2024-6-10

[9]
The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.

Comput Med Imaging Graph. 2020-12

[10]
RIL-Contour: a Medical Imaging Dataset Annotation Tool for and with Deep Learning.

J Digit Imaging. 2019-8

引用本文的文献

[1]
Single cell resolution 3D imaging and segmentation within intact live tissues.

Npj Imaging. 2025-9-3

[2]
AnyStar: Domain randomized universal star-convex 3D instance segmentation.

IEEE Winter Conf Appl Comput Vis. 2024-1

[3]
Deep Learning-Based Imaging Analysis Reveals Radiation-Induced Bystander Effects on Cancer Cell Migration and the Modulation by Cisplatin.

Int J Mol Sci. 2025-8-13

[4]
Ultrack: pushing the limits of cell tracking across biological scales.

Nat Methods. 2025-8-25

[5]
Investigating the role of molecular coating in human corneal endothelial cell primary culture using artificial intelligence-driven image analysis.

Sci Rep. 2025-8-25

[6]
Single cell autofluorescence imaging reveals immediate metabolic shifts of neutrophils with activation across biological systems.

Front Immunol. 2025-8-7

[7]
Novel environment exposure drives temporally defined and region-specific chromatin accessibility and gene expression changes in the hippocampus.

Nat Commun. 2025-8-21

[8]
Accelerated maturation of branched organoids confined in collagen droplets.

Lab Chip. 2025-8-20

[9]
Colorectal cancer heterogeneity co-evolves with tumor architecture to determine disease outcome.

bioRxiv. 2025-8-13

[10]
Enhancer Placement Impacts Transcriptional Dynamics in Embryos.

bioRxiv. 2025-8-16

本文引用的文献

[1]
Tracking cell lineages in 3D by incremental deep learning.

Elife. 2022-1-6

[2]
LIVECell-A large-scale dataset for label-free live cell segmentation.

Nat Methods. 2021-9

[3]
nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer.

Cell Syst. 2020-5-20

[4]
A survey on active learning and human-in-the-loop deep learning for medical image analysis.

Med Image Anal. 2021-7

[5]
Open-source deep-learning software for bioimage segmentation.

Mol Biol Cell. 2021-4-19

[6]
Cellpose: a generalist algorithm for cellular segmentation.

Nat Methods. 2021-1

[7]
A scoping review of transfer learning research on medical image analysis using ImageNet.

Comput Biol Med. 2021-1

[8]
NuClick: A deep learning framework for interactive segmentation of microscopic images.

Med Image Anal. 2020-10

[9]
Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl.

Nat Methods. 2019-10-21

[10]
Deep learning for cellular image analysis.

Nat Methods. 2019-5-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索