Zhang Qianzhen, An Ran, Long Xifa, Yang Zhihua, Pan Shilie, Yang Yun
Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202415066. doi: 10.1002/anie.202415066. Epub 2024 Oct 31.
The exploration and research for deep-ultraviolet (UV) nonlinear optical (NLO) crystals are of great significance for all-solid-state lasers. This work is based on the excellent structural [BO] units which manipulate the excellent performances of famous commercial NLO crystal β-BaBO (β-BBO) to explore new alternatives of deep-UV NLO materials. A deep-UV rare-earth metal borate fluoride RbScBOF (RSBF) is successfully designed by combining the heterovalent ions substitution strategy, and fluorination strategy. Expectedly, RSBF exhibits an extremely short cutoff edge below 175 nm (189 nm for β-BBO), and a moderate birefringence of 0.088 at 1064 nm. The shortest phase-matching (PM) wavelength of RSBF (λ=182 nm) is shortened by 23 nm compared with β-BBO (λ=205 nm) due to the improvements in the chromatic dispersion and cutoff edge, and an experimental frequency-doubling effect 1.4×KHPO (KDP) further suggests that RSBF can output a deep-UV harmonic laser. This work provides new sights from the original influencing factors for the rational and purposeful design of deep-UV NLO materials.
对深紫外(UV)非线性光学(NLO)晶体的探索和研究对全固态激光器具有重要意义。这项工作基于出色的结构[BO]单元,这些单元造就了著名商用NLO晶体β-偏硼酸钡(β-BBO)的优异性能,以此来探索深紫外NLO材料的新替代品。通过结合异价离子取代策略和氟化策略,成功设计出一种深紫外稀土金属硼氟化物RbScBOF(RSBF)。不出所料,RSBF在低于175 nm处呈现出极短的截止边(β-BBO为189 nm),在1064 nm处具有0.088的适度双折射。由于色散和截止边的改善,RSBF的最短相位匹配(PM)波长(λ=182 nm)比β-BBO(λ=205 nm)缩短了23 nm,并且1.4倍磷酸二氢钾(KDP)的实验倍频效应进一步表明RSBF可以输出深紫外谐波激光。这项工作从影响深紫外NLO材料合理且有针对性设计的原始因素方面提供了新的视角。