Department of Physiology and Biophysics and the Case Western Reserve University, Cleveland, Ohio, USA.
Department of Physics, Case Western Reserve University, Cleveland, Ohio, USA.
Protein Sci. 2024 Oct;33(10):e5179. doi: 10.1002/pro.5179.
C-terminally phosphorylated TAR DNA-binding protein of 43 kDa (TDP-43) marks the proteinaceous inclusions that characterize a number of age-related neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal lobar degeneration and Alzheimer's disease. TDP-43 phosphorylation at S403/S404 and (especially) at S409/S410 is, in fact, accepted as a biomarker of proteinopathy. These residues are located within the low complexity domain (LCD), which also drives the protein's liquid-liquid phase separation (LLPS). The impact of phosphorylation at these LCD sites on phase separation of the protein is a topic of great interest, as these post-translational modifications and LLPS are both implicated in proteinopathies. Here, we employed a combination of experimental and simulation-based approaches to explore this question on a phosphomimetic model of the TDP-43 LCD. Our turbidity and fluorescence microscopy data show that phosphomimetic Ser-to-Asp substitutions at residues S403, S404, S409 and S410 alter the LLPS behavior of TDP-43 LCD. In particular, unlike the LLPS of unmodified protein, LLPS of the phosphomimetic variants displays a biphasic dependence on salt concentration. Through coarse-grained modeling, we find that this biphasic salt dependence is derived from an altered mechanism of phase separation, in which LLPS-driving short-range intermolecular hydrophobic interactions are modulated by long-range attractive electrostatic interactions. Overall, this in vitro and in silico study provides a physiochemical foundation for understanding the impact of pathologically relevant C-terminal phosphorylation on the LLPS of TDP-43 in a more complex cellular environment.
C 端磷酸化的 TAR DNA 结合蛋白 43kDa(TDP-43)标记了多种与年龄相关的神经退行性疾病的蛋白包涵体,包括肌萎缩性侧索硬化症、额颞叶痴呆和阿尔茨海默病。TDP-43 在 S403/S404 和(特别是)S409/S410 的磷酸化实际上被认为是蛋白病的生物标志物。这些残基位于低复杂度结构域(LCD)内,该结构域也驱动着蛋白的液-液相分离(LLPS)。这些 LCD 位点磷酸化对蛋白相分离的影响是一个非常有趣的话题,因为这些翻译后修饰和 LLPS 都与蛋白病有关。在这里,我们采用实验和基于模拟的方法相结合,对 TDP-43 LCD 的磷酸模拟模型进行了研究。我们的浊度和荧光显微镜数据表明,残基 S403、S404、S409 和 S410 的磷酸模拟 Ser 到 Asp 取代改变了 TDP-43 LCD 的 LLPS 行为。特别是,与未经修饰的蛋白的 LLPS 不同,磷酸模拟变体的 LLPS 对盐浓度表现出两相依赖性。通过粗粒化建模,我们发现这种两相盐依赖性源自相分离机制的改变,其中 LLPS 驱动的短程分子间疏水相互作用受到长程吸引力静电相互作用的调节。总的来说,这项体外和计算研究为理解在更复杂的细胞环境中与病理相关的 C 端磷酸化对 TDP-43 的 LLPS 的影响提供了生理化学基础。