Department of Biotechnology, School of biosciences and technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
Nanotechnology. 2024 Sep 30;35(49). doi: 10.1088/1361-6528/ad7d7f.
Microbial fuel cells (MFCs) can generate electricity by breaking down organic molecules through sustainable bio-electrochemical processes and wastewater as an energy source. A novel approach to remediate wastewater containing selenite was studied utilizing a selenite-reducing mixed bacterial culture with a nano manganese oxide modified cathode in the MFCs. The modification enhanced electrochemical catalytic activity, extracellular electron transfer rate, chemical oxygen demand (COD) elimination efficiency, and coulombic efficiency. Scanning electron microscopy and energy dispersive x-rays analysis were used to examine a manganese dioxide-coated graphite cathode's surface morphology and chemical composition. The manganese dioxide-coated electrode generated up to 69% higher voltage with 150 ppm selenite concentration than the uncoated graphite electrode. The MFC removed up to 80% of the initial COD of 120 mg land achieved a maximum power density of 1.51 W m. The study demonstrates that MFCs can effectively treat selenite-containing wastewater, and modifying the cathode can enhance energy production.
微生物燃料电池 (MFC) 可以通过可持续的生物电化学过程分解有机分子,并利用废水作为能源来发电。本研究采用具有纳米氧化锰修饰阴极的亚硒酸盐还原混合细菌培养物,为含亚硒酸盐废水的处理提供了一种新方法。这种修饰提高了电化学催化活性、细胞外电子传递速率、化学需氧量 (COD) 去除效率和库仑效率。扫描电子显微镜和能谱分析用于检查二氧化锰涂覆石墨阴极的表面形态和化学成分。与未涂覆的石墨电极相比,涂覆有二氧化锰的电极在 150 ppm 硒酸盐浓度下产生的电压高达 69%。MFC 去除了初始 COD 的 80%,初始 COD 为 120mg/L,最大功率密度为 1.51W/m。该研究表明,MFC 可以有效地处理含硒酸盐的废水,并且修饰阴极可以提高能源产量。