Suppr超能文献

机器学习辅助超低密度单核苷酸多态性面板有助于鉴定 Tharparkar 牛品种:家畜基因组学数字化转型的经验教训。

Machine Learning-Aided Ultra-Low-Density Single Nucleotide Polymorphism Panel Helps to Identify the Tharparkar Cattle Breed: Lessons for Digital Transformation in Livestock Genomics.

机构信息

Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India.

ICAR-National Research Centre on Mithun, Medziphema, India.

出版信息

OMICS. 2024 Oct;28(10):514-525. doi: 10.1089/omi.2024.0153. Epub 2024 Sep 20.

Abstract

Cattle breed identification is crucial for livestock research and sustainable food systems, and advances in genomics and artificial intelligence present new opportunities to address these challenges. This study investigates the identification of the Tharparkar cattle breed using genomics tools combined with machine learning (ML) techniques. By leveraging data from the Bovine SNP 50K chip, we developed a breed-specific panel of single nucleotide polymorphisms (SNPs) for Tharparkar cattle and integrated data from seven other Indian cattle populations to enhance panel robustness. Genome-wide association studies (GWAS) and principal component analysis were employed to identify 500 SNPs, which were then refined using ML models-AdaBoost, bagging tree, gradient boosting machines, and random forest-to determine the minimal number of SNPs needed for accurate breed identification. Panels of 23 and 48 SNPs achieved accuracy rates of 95.2-98.4%. Importantly, the identified SNPs were associated with key productive and adaptive traits, thus attesting to the value and potentials of digital transformation in livestock genomics. The ML-aided ultra-low-density SNP panel approach reported here not only facilitates breed identification but also contributes to preserving genetic diversity and guiding future breeding programs.

摘要

牛种鉴定对于畜牧业研究和可持续食品系统至关重要,而基因组学和人工智能的进步为解决这些挑战带来了新的机遇。本研究利用基因组学工具和机器学习(ML)技术,调查了使用基因组学工具对 Tharparkar 牛种进行鉴定的方法。通过利用来自 Bovine SNP 50K 芯片的数据,我们开发了一个针对 Tharparkar 牛种的特异性单核苷酸多态性(SNP)面板,并整合了来自其他七个印度牛种的数据,以增强面板的稳健性。我们进行了全基因组关联研究(GWAS)和主成分分析,鉴定出了 500 个 SNP,然后使用 ML 模型——AdaBoost、袋装树、梯度提升机和随机森林,对这些 SNP 进行了精炼,以确定用于准确鉴定牛种所需的最小 SNP 数量。使用 23 和 48 个 SNP 的面板分别实现了 95.2-98.4%的准确率。重要的是,鉴定出的 SNP 与关键的生产和适应性状相关,这证明了数字转型在畜牧业基因组学中的价值和潜力。本研究报告的基于 ML 的超低密度 SNP 面板方法不仅有助于进行牛种鉴定,还有助于保护遗传多样性并指导未来的育种计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验