Suppr超能文献

用于高炉煤气利用率预测的去噪多尺度谱图小波神经网络

Denoising Multiscale Spectral Graph Wavelet Neural Networks for Gas Utilization Ratio Prediction in Blast Furnace.

作者信息

Liu Chengbao, Li Jingwei, Li Yuan, Tan Jie

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Jun;36(6):11369-11383. doi: 10.1109/TNNLS.2024.3453280.

Abstract

Given the crucial role of the gas utilization ratio (GUR) in reflecting blast furnace operation and energy consumption, accurately predicting its development trend holds significant value for blast furnace operators. However, in the harsh ironmaking environment, GUR-affecting variables are prone to significant nonstationary noise. Moreover, these variables are coupled and correlated, meaning that improper regulation of one variable can destabilize the furnace and lead to substantial GUR fluctuations. This poses a major challenge for achieving accurate GUR prediction. To tackle this issue, this article proposes a denoising multiscale spectral graph wavelet neural network (DMSGWNN) for online dynamic forecasting of the GUR, which is an end-to-end learning method that removes variable noise and captures complex variable correlations simultaneously. First, a regularized self-representation (RSR) model is constructed to eliminate nonstationary noise in blast furnace process variables. Then, a novel multiscale spectral graph wavelet neural network (MSGWNN) is proposed to capture the complex correlations among input variables and extract their multiscale representations through spectral graph wavelet (SGW) transform with the heat kernel scaling function and Gaussian kernel wavelet functions. Finally, the effectiveness of the proposed DMSGWNN method is verified using actual blast furnace ironmaking process data from a blast furnace in China, achieving an average predictive hit rate (HR) as high as 98.06% for GUR prediction.

摘要

鉴于煤气利用率(GUR)在反映高炉运行和能耗方面的关键作用,准确预测其发展趋势对高炉操作人员具有重要价值。然而,在恶劣的炼铁环境中,影响GUR的变量容易出现显著的非平稳噪声。此外,这些变量相互耦合且相关,这意味着对一个变量的不当调节可能会使高炉不稳定,并导致GUR大幅波动。这对实现准确的GUR预测构成了重大挑战。为解决这一问题,本文提出了一种用于GUR在线动态预测的去噪多尺度谱图小波神经网络(DMSGWNN),这是一种端到端的学习方法,可同时去除变量噪声并捕捉复杂的变量相关性。首先,构建一个正则化自表示(RSR)模型,以消除高炉过程变量中的非平稳噪声。然后,提出一种新颖的多尺度谱图小波神经网络(MSGWNN),通过使用热核缩放函数和高斯核小波函数的谱图小波(SGW)变换来捕捉输入变量之间的复杂相关性,并提取它们的多尺度表示。最后,利用中国某高炉的实际炼铁过程数据验证了所提出的DMSGWNN方法的有效性,在GUR预测方面实现了高达98.06%的平均预测命中率(HR)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验