Suppr超能文献

通过脉冲激光冲击在空气中超快合成过渡金属磷化物

Ultrafast Synthesis of Transition Metal Phosphides in Air via Pulsed Laser Shock.

作者信息

Xu Ziyuan, Chen Qiao, Han Xiao, Wang Jiaxuan, Wang Pan, Zheng Tao, Pang Sin-Yi, Wang Jincheng, Li Hejun, Xia Zhenhai, Hao Jianhua

机构信息

State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China.

Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, PR China.

出版信息

Nano Lett. 2024 Oct 2;24(39):12254-12262. doi: 10.1021/acs.nanolett.4c03410. Epub 2024 Sep 20.

Abstract

Transition metal phosphide nanoparticles (TMP NPs) represent a promising class of nanomaterials in the field of energy; however, a universal, time-saving, energy-efficient, and scalable synthesis method is currently lacking. Here, a facile synthesis approach is first introduced using a pulsed laser shock (PLS) process mediated by metal-organic frameworks, free of any inert gas protection, enabling the synthesis of diverse TMP NPs. Additionally, through thermodynamic calculations and experimental validation, the phase selection and competition behavior between phosphorus and oxygen have been elucidated, dictated by the redox potential and electronegativity. The resulting composites exhibit a balanced performance and extended durability. When employed as electrocatalysts for overall water splitting, the as-constructed electrolyzer achieves a low cell voltage of 1.54 V at a current density of 10 mA cm. This laser method for phosphide synthesis provides clear guidelines and holds potential for the preparation of nanomaterials applicable in catalysis, energy storage, biosensors, and other fields.

摘要

过渡金属磷化物纳米颗粒(TMP NPs)是能源领域一类很有前景的纳米材料;然而,目前缺乏一种通用、省时、节能且可扩展的合成方法。在此,首次引入了一种简便的合成方法,该方法利用金属有机框架介导的脉冲激光冲击(PLS)过程,无需任何惰性气体保护,能够合成多种TMP NPs。此外,通过热力学计算和实验验证,阐明了磷与氧之间的相选择和竞争行为,这由氧化还原电位和电负性决定。所得复合材料表现出平衡的性能和更长的耐久性。当用作全水解的电催化剂时,所构建的电解槽在电流密度为10 mA cm时实现了1.54 V的低电池电压。这种用于磷化物合成的激光方法提供了明确的指导方针,并且在制备适用于催化、能量存储、生物传感器和其他领域的纳米材料方面具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验