Zhao Zhi-Hao, Wang Huan, Li Jinjin, Qiao Xingyue, Liu Zhenpeng, Ren Zhipeng, Yuan Menglei, Zhang Jian
State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China.
J Am Chem Soc. 2024 Oct 30;146(43):29441-29449. doi: 10.1021/jacs.4c08587. Epub 2024 Sep 20.
Acetylene hydrochlorination is a vital industrial process for the manufacture of vinyl chloride monomer (VCM). Current thermocatalytic acetylene hydrochlorination requires toxic mercury-based or costly noble metal-based catalysts, high temperatures (≥180 °C) and excessive gaseous HCl. Here, we report a room-temperature photocatalytic acetylene hydrochlorination strategy involving concurrent coupling of electron-driven proton reduction (*H) and hole-driven chloride oxidation (*Cl) on photocatalyst surfaces. Under simulated solar light illumination, the developed noble-metal-free g-CN/BiOCl photocatalysts show a considerably high VCM production rate of 1198.6 μmol g h and a high VCM selectivity of 95% in a 0.1 M HCl aqueous solution. Even in chloride-rich natural seawater and acidified natural seawater, the VCM production rates of g-CN/BiOCl photocatalysts are up to 170.3 μmol g h with a VCM selectivity of 80.4% and 1247.7 μmol g h with a VCM selectivity of 94.7%, respectively. Moreover, with sunlight irradiation and acidified natural seawater, the g-CN/BiOCl photocatalysts in a large-scale photosystem retain outstanding acetylene hydrochlorination performance over 10 days of operation. The radical scavenging, in situ photochemical Fourier transform infrared spectroscopy, theoretical simulations, and control experiments reveal that active *Cl and *H play key roles in photocatalytic acetylene hydrochlorination via a possible reaction pathway of CH → *CH → *CHCl → *CHCl → CHCl. With respect to sustainability and low cost, this photocatalytic acetylene hydrochlorination offers excellent advantages over conventional thermocatalytic hydrochlorination technologies.
乙炔氢氯化是制造氯乙烯单体(VCM)的关键工业过程。当前的热催化乙炔氢氯化需要有毒的汞基或昂贵的贵金属基催化剂、高温(≥180°C)和过量的气态HCl。在此,我们报道了一种室温光催化乙炔氢氯化策略,该策略涉及在光催化剂表面同时耦合电子驱动的质子还原(H)和空穴驱动的氯氧化(Cl)。在模拟太阳光照射下,所开发的无贵金属g-CN/BiOCl光催化剂在0.1 M HCl水溶液中显示出相当高的VCM产率,为1198.6 μmol g h,VCM选择性高达95%。即使在富含氯的天然海水和酸化天然海水中,g-CN/BiOCl光催化剂的VCM产率分别高达170.3 μmol g h,VCM选择性为80.4%,以及1247.7 μmol g h,VCM选择性为94.7%。此外,在太阳光照射和酸化天然海水条件下,大规模光系统中的g-CN/BiOCl光催化剂在运行10天以上的时间里保持了出色的乙炔氢氯化性能。自由基捕获、原位光化学傅里叶变换红外光谱、理论模拟和对照实验表明,活性Cl和H通过CH → *CH → *CHCl → *CHCl → CHCl的可能反应途径在光催化乙炔氢氯化中起关键作用。在可持续性和低成本方面,这种光催化乙炔氢氯化相对于传统热催化氢氯化技术具有显著优势。