Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Sci Adv. 2024 Sep 20;10(38):eadr1099. doi: 10.1126/sciadv.adr1099.
In the rapidly evolving field of human-machine interfaces (HMIs), high-resolution wearable electronic skin (e-skin) is essential for user interaction. However, traditional array-structured tactile interfaces require increased number of interconnects, while soft material-based computational methods have limited functionalities. Here, we introduce a thin and soft e-skin for tactile interfaces, offering high mapping capabilities through electrical impedance tomography (EIT). We employed an organic/inorganic hybrid structure with simple, cost-effective fabrication processes, ensuring flexibility and stability. The conductive and stretchable sensing domain includes a micropatterned multiwall carbon nanotube and elastomer composite. The skin-like tactile interface effectively detects pressure-induced conductivity changes, offering superior spatiotemporal resolution with fewer interconnects (pixel/interconnects >57). This EIT-based tactile interface discerns external pressures to a submillimeter degree and vertical deformations of a few hundred micrometers. It sustains stable functions under external damage or environmental changes, confirming its suitability for persistent wearable use. We demonstrate practical applications in real-time HMIs: handwriting recognition and drone control.
在人机接口(HMI)这一快速发展的领域中,高分辨率可穿戴电子皮肤(e-skin)对于用户交互至关重要。然而,传统的阵列结构触觉接口需要增加互连数量,而基于软材料的计算方法的功能有限。在这里,我们引入了一种用于触觉接口的薄而软的 e-skin,通过电阻抗断层成像(EIT)提供高映射能力。我们采用了具有简单、经济高效制造工艺的有机/无机混合结构,确保了灵活性和稳定性。导电和可拉伸的传感域包括微图案化多壁碳纳米管和弹性体复合材料。这种类似皮肤的触觉接口可以有效地检测压力引起的电导率变化,具有更高的时空分辨率,互连数量更少(像素/互连>57)。基于 EIT 的触觉接口可以分辨亚毫米级的外部压力和几百微米的垂直变形。它可以在外部损坏或环境变化下保持稳定的功能,证实了其适用于持续可穿戴使用。我们展示了在实时 HMI 中的实际应用:手写识别和无人机控制。