Suppr超能文献

用于可穿戴生理监测的具有材料-微结构协同优化的柔性传感器

Flexible Sensor with Material-Microstructure Synergistic Optimization for Wearable Physiological Monitoring.

作者信息

Mou Yaojia, Wang Cong, Jiang Xiaohu, Wang Jingxiang, Zhang Changchao, Liu Linpeng, Duan Ji'an

机构信息

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.

College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China.

出版信息

Materials (Basel). 2025 Aug 7;18(15):3707. doi: 10.3390/ma18153707.

Abstract

Flexible sensors have emerged as essential components in next-generation technologies such as wearable electronics, smart healthcare, soft robotics, and human-machine interfaces, owing to their outstanding mechanical flexibility and multifunctional sensing capabilities. Despite significant advancements, challenges such as the trade-off between sensitivity and detection range, and poor signal stability under cyclic deformation remain unresolved. To overcome the aforementioned limitations, this work introduces a high-performance soft sensor featuring a dual-layered electrode system, comprising silver nanoparticles (AgNPs) and a composite of multi-walled carbon nanotubes (MWCNTs) with carbon black (CB), coupled with a laser-engraved crack-gradient microstructure. This structural strategy facilitates progressive crack formation under applied strain, thereby achieving enhanced sensitivity (1.56 kPa), broad operational bandwidth (50-600 Hz), fine frequency resolution (0.5 Hz), and a rapid signal response. The synergistic structure also improves signal repeatability, durability, and noise immunity. The sensor demonstrates strong applicability in health monitoring, motion tracking, and intelligent interfaces, offering a promising pathway for reliable, multifunctional sensing in wearable health monitoring, motion tracking, and soft robotic systems.

摘要

柔性传感器因其出色的机械柔韧性和多功能传感能力,已成为可穿戴电子设备、智能医疗、软体机器人和人机接口等下一代技术中的关键组件。尽管取得了重大进展,但诸如灵敏度与检测范围之间的权衡以及循环变形下信号稳定性差等挑战仍未得到解决。为克服上述限制,本研究引入了一种高性能软传感器,其具有双层电极系统,该系统由银纳米颗粒(AgNPs)以及多壁碳纳米管(MWCNTs)与炭黑(CB)的复合材料组成,并结合了激光雕刻的裂纹梯度微观结构。这种结构策略有助于在施加应变时逐步形成裂纹,从而实现更高的灵敏度(1.56 kPa)、更宽的工作带宽(50 - 600 Hz)、精细的频率分辨率(0.5 Hz)以及快速的信号响应。这种协同结构还提高了信号的可重复性、耐久性和抗噪声能力。该传感器在健康监测、运动跟踪和智能接口方面展现出强大的适用性,为可穿戴健康监测、运动跟踪和软体机器人系统中的可靠多功能传感提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e37/12348704/d2b184abae4e/materials-18-03707-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验