Suppr超能文献

不同带电聚苯乙烯纳米/微塑料在水蕹菜(Ipomoea aquatica F.)中的积累模式和效应。

Accumulation modes and effects of differentially charged polystyrene nano/microplastics in water spinach (Ipomoea aquatica F.).

机构信息

College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China; Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, China; Xinjiang Production and Construction Corps (XPCC) Key Laboratory of Utilization and Equipment of Special Agricultural and Forestry Products in Southern Xinjiang, China.

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.

出版信息

J Hazard Mater. 2024 Dec 5;480:135892. doi: 10.1016/j.jhazmat.2024.135892. Epub 2024 Sep 18.

Abstract

There is widespread concern about the risk of nano/microplastics (N/MPs) entering the food chain through higher plants. However, the primary factors that influence the absorption of N/MPs by higher plants remain largely unclear. This study examined the impact of Europium-doped N/MPs with different particle sizes and surface charges by water spinach (Ipomoea aquatica F.) to address this knowledge gap. N/MPs were visualized and quantitatively analyzed using laser confocal microscopy, scanning electron microscopy, and inductively coupled plasma-mass spectrometry. N/MPs with different surface charges were absorbed by the roots, with the apoplastic pathway as the major route of transport. After 28 days of exposure to 50 mg L N/MPs, N/MPs-COOH caused the highest levels of oxidative stress and damage to the roots. The plants accumulated NPs-COOH the most (average 1640.16 mg L), while they accumulated NPs-NH the least (average 253.70 mg L). Particle size was the main factor influencing the translocation of N/MPs from the root to the stem, while the Zeta potential mainly influenced particle entry into the roots from the hydroponic solution as well as stem-to-leaf translocation. Different charged N/MPs induced osmotic stress in the roots. A small amount of N/MPs in the leaves significantly stimulated the production of chlorophyll, while excessive N/MPs significantly reduced its content. These results provide new insights into the mechanism of interaction between N/MPs and plants.

摘要

人们普遍担心纳米/微塑料(N/MPs)通过高等植物进入食物链的风险。然而,影响高等植物吸收 N/MPs 的主要因素在很大程度上仍不清楚。本研究通过水蕹菜(Ipomoea aquatica F.)研究了不同粒径和表面电荷的铕掺杂 N/MPs 的影响,以填补这一知识空白。使用激光共聚焦显微镜、扫描电子显微镜和电感耦合等离子体质谱对 N/MPs 进行了可视化和定量分析。带不同表面电荷的 N/MPs 被根部吸收,质外体途径是主要的运输途径。在暴露于 50mg/L N/MPs 28 天后,N/MPs-COOH 导致根中氧化应激和损伤水平最高。植物积累的 NPs-COOH 最多(平均 1640.16mg/L),而积累的 NPs-NH 最少(平均 253.70mg/L)。粒径是影响 N/MPs 从根部向茎部转运的主要因素,而 Zeta 电位主要影响 N/MPs 从水培溶液进入根部以及从茎部向叶片转运。不同带电 N/MPs 在根部引起渗透胁迫。叶片中少量的 N/MPs 显著刺激叶绿素的产生,而过量的 N/MPs 则显著降低其含量。这些结果为 N/MPs 与植物相互作用的机制提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验