Suppr超能文献

剖析抑郁症状:多组学聚类揭示免疫相关亚组和细胞类型特异性失调。

Dissecting depression symptoms: Multi-omics clustering uncovers immune-related subgroups and cell-type specific dysregulation.

作者信息

Hagenberg Jonas, Brückl Tanja M, Erhart Mira, Kopf-Beck Johannes, Ködel Maik, Rehawi Ghalia, Röh-Karamihalev Simone, Sauer Susann, Yusupov Natan, Rex-Haffner Monika, Spoormaker Victor I, Sämann Philipp, Binder Elisabeth, Knauer-Arloth Janine

机构信息

Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry, 80804 Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.

Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.

出版信息

Brain Behav Immun. 2025 Jan;123:353-369. doi: 10.1016/j.bbi.2024.09.013. Epub 2024 Sep 18.

Abstract

In a subset of patients with mental disorders, such as depression, low-grade inflammation and altered immune marker concentrations are observed. However, these immune alterations are often assessed by only one data type and small marker panels. Here, we used a transdiagnostic approach and combined data from two cohorts to define subgroups of depression symptoms across the diagnostic spectrum through a large-scale multi-omics clustering approach in 237 individuals. The method incorporated age, body mass index (BMI), 43 plasma immune markers and RNA-seq data from peripheral mononuclear blood cells (PBMCs). Our initial clustering revealed four clusters, including two immune-related depression symptom clusters characterized by elevated BMI, higher depression severity and elevated levels of immune markers such as interleukin-1 receptor antagonist (IL-1RA), C-reactive protein (CRP) and C-C motif chemokine 2 (CCL2 or MCP-1). In contrast, the RNA-seq data mostly differentiated a cluster with low depression severity, enriched in brain related gene sets. This cluster was also distinguished by electrocardiography data, while structural imaging data revealed differences in ventricle volumes across the clusters. Incorporating predicted cell type proportions into the clustering resulted in three clusters, with one showing elevated immune marker concentrations. The cell type proportion and genes related to cell types were most pronounced in an intermediate depression symptoms cluster, suggesting that RNA-seq and immune markers measure different aspects of immune dysregulation. Lastly, we found a dysregulation of the SERPINF1/VEGF-A pathway that was specific to dendritic cells by integrating immune marker and RNA-seq data. This shows the advantages of combining different data modalities and highlights possible markers for further stratification research of depression symptoms.

摘要

在一部分患有精神障碍(如抑郁症)的患者中,观察到低度炎症和免疫标志物浓度改变。然而,这些免疫改变通常仅通过一种数据类型和小的标志物面板进行评估。在此,我们采用跨诊断方法,结合来自两个队列的数据,通过对237名个体进行大规模多组学聚类分析,在整个诊断范围内定义抑郁症症状的亚组。该方法纳入了年龄、体重指数(BMI)、43种血浆免疫标志物以及来自外周血单核细胞(PBMC)的RNA测序数据。我们最初的聚类分析揭示了四个聚类,其中包括两个与免疫相关的抑郁症症状聚类,其特征为BMI升高、抑郁严重程度更高以及免疫标志物如白细胞介素-1受体拮抗剂(IL-1RA)、C反应蛋白(CRP)和C-C基序趋化因子2(CCL2或MCP-1)水平升高。相比之下,RNA测序数据主要区分出一个抑郁严重程度较低的聚类,该聚类富含与大脑相关的基因集。这个聚类也通过心电图数据得以区分,而结构成像数据显示各聚类之间心室容积存在差异。将预测的细胞类型比例纳入聚类分析后得到三个聚类,其中一个显示免疫标志物浓度升高。细胞类型比例以及与细胞类型相关的基因在中度抑郁症症状聚类中最为明显,这表明RNA测序和免疫标志物测量的是免疫失调的不同方面。最后,通过整合免疫标志物和RNA测序数据,我们发现了一种仅在树突状细胞中存在的丝氨酸蛋白酶抑制剂F1/血管内皮生长因子A(SERPINF1/VEGF-A)通路失调。这显示了结合不同数据模式的优势,并突出了可能用于抑郁症症状进一步分层研究的标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验