Discipline of Physics, School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu Natal, Westville Campus, Durban, 4001, South Africa.
National Institute for Theoretical and Computational Sciences, University of KwaZulu Natal, Westville Campus, Durban, 4001, South Africa.
Environ Monit Assess. 2024 Sep 21;196(10):965. doi: 10.1007/s10661-024-13009-y.
South Africa has grappled with recurring drought scenarios for over two decades, leading to substantial economic losses. Droughts in the Western Cape between 2015 and 2018, especially in Cape Town was declared a national disaster, resulting in the strict water rationing and the "day zero" effect. This study presents a set of simulations for predicting drought over South Africa using Artificial Neural Network (ANN), using Standard Precipitation Index (SPI) as the drought indicator in line with the recommendations of the World Meteorological Organization (WMO). Furthermore, different meteorological variables and an aerosol parameter were used to develop the drought set in four distinct locations in South Africa for a 21-year period. That data used include relative humidity (rh), temperature (tp), soil wetness (sw), evapotranspiration (et), evaporation (ev) sea surface temperature (st), and aerosol optical depth (aa). The obtained R values for SPI3 ranged from 0.49 to 0.84 and from 0.22 to 0.84 for SPI6 at Spring Bok, Umtata 0.83 to 0.95 for SPI3, and 0.61 to 0.87 for SPI6; Cape Town displayed R values from 0.78 to 0.94 for SPI3 and 0.57 to 0.95 for SPI6, while Upington had 0.77-0.95 for SPI3, and 0.78-0.92 for SPI6. These findings underscore the significance of evapotranspiration (et) as a pivotal parameter in drought simulation. Additionally, the predictive accuracy of these parameter combinations varied distinctly across different locations, even for the same set of parameters. This implies that there is no single universal scheme for drought prediction. Hence, the results are important for simulating future drought scenarios at different parts of South Africa. Finally, this study shows that ANN is an effective tool that can be utilized for drought studies and simulations.
南非在过去二十年中一直与反复出现的干旱情况作斗争,这导致了巨大的经济损失。2015 年至 2018 年期间,西开普省(Western Cape)发生干旱,特别是在开普敦,宣布进入国家灾难状态,导致严格的配水和“零日”效应。本研究使用人工神经网络(ANN)为南非的干旱预测提出了一套模拟方案,使用标准降水指数(SPI)作为干旱指标,符合世界气象组织(WMO)的建议。此外,在南非的四个不同地点,使用不同的气象变量和气溶胶参数开发了一套干旱数据集,时间跨度为 21 年。使用的数据包括相对湿度(rh)、温度(tp)、土壤湿度(sw)、蒸散(et)、蒸发(ev)、海面温度(st)和气溶胶光学深度(aa)。在斯普林博克、乌姆塔塔、开普敦和乌彭加的 SPI3 的 R 值分别在 0.49 到 0.84 之间,SPI6 的 R 值分别在 0.22 到 0.84 之间,SPI3 的 R 值分别在 0.83 到 0.95 之间,SPI6 的 R 值分别在 0.61 到 0.87 之间,开普敦的 SPI3 的 R 值在 0.78 到 0.94 之间,SPI6 的 R 值在 0.57 到 0.95 之间,乌彭加的 SPI3 的 R 值在 0.77 到 0.95 之间,SPI6 的 R 值在 0.78 到 0.92 之间。这些结果强调了蒸散(et)作为干旱模拟关键参数的重要性。此外,即使对于相同的参数集,这些参数组合在不同地点的预测精度也有明显差异。这意味着没有一种通用的干旱预测方案。因此,这些结果对于模拟南非不同地区未来的干旱情况非常重要。最后,本研究表明,ANN 是一种有效的工具,可用于干旱研究和模拟。