Suppr超能文献

用于更好地解读短期大地震的自进化人工智能框架。

Self-evolving artificial intelligence framework to better decipher short-term large earthquakes.

作者信息

Cho In Ho, Chapagain Ashish

机构信息

CCEE Department, Iowa State University, Ames, IA, 50011, USA.

出版信息

Sci Rep. 2024 Sep 20;14(1):21934. doi: 10.1038/s41598-024-72667-7.

Abstract

Large earthquakes (EQs) occur at surprising loci and timing, and their descriptions remain a long-standing enigma. Finding answers by traditional approaches or recently emerging machine learning (ML)-driven approaches is formidably difficult due to data scarcity, interwoven multiple physics, and absent first principles. This paper develops a novel artificial intelligence (AI) framework that can transform raw observational EQ data into ML-friendly new features via basic physics and mathematics and that can self-evolve in a direction to better reproduce short-term large EQs. An advanced reinforcement learning (RL) architecture is placed at the highest level to achieve self-evolution. It incorporates transparent ML models to reproduce magnitude and spatial location of large EQs ([Formula: see text] 6.5) weeks before of the failure. Verifications with 40-year EQs in the western U.S. and comparisons against a popular EQ forecasting method are promising. This work will add a new dimension of AI technologies to large EQ research. The developed AI framework will help establish a new database of all EQs in terms of ML-friendly new features and continue to self-evolve in a direction of better reproducing large EQs.

摘要

大地震发生的地点和时间令人惊讶,对它们的描述仍然是一个长期存在的谜。由于数据稀缺、多种物理过程相互交织以及缺乏第一性原理,用传统方法或最近出现的机器学习驱动方法来寻找答案极其困难。本文开发了一种新颖的人工智能框架,该框架可以通过基础物理和数学将原始地震观测数据转换为适合机器学习的新特征,并能朝着更好地再现短期大地震的方向自我进化。一个先进的强化学习架构置于最高层以实现自我进化。它纳入了透明的机器学习模型,以在大地震(震级[公式:见原文]6.5)发生前数周再现其震级和空间位置。在美国西部对40年地震数据的验证以及与一种流行的地震预测方法的比较结果很有前景。这项工作将为大地震研究增添人工智能技术的新维度。所开发的人工智能框架将有助于建立一个关于所有地震的、基于适合机器学习新特征的新数据库,并继续朝着更好地再现大地震的方向自我进化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验