Suppr超能文献

基于高斯曲率的个体大地震独特特征及其对定制数据驱动预测的启示。

Gauss curvature-based unique signatures of individual large earthquakes and its implications for customized data-driven prediction.

机构信息

CCEE Department, Iowa State University, Ames, IA, 50011, USA.

出版信息

Sci Rep. 2022 May 23;12(1):8669. doi: 10.1038/s41598-022-12575-w.

Abstract

Statistical descriptions of earthquakes offer important probabilistic information, and newly emerging technologies of high-precision observations and machine learning collectively advance our knowledge regarding complex earthquake behaviors. Still, there remains a formidable knowledge gap for predicting individual large earthquakes' locations and magnitudes. Here, this study shows that the individual large earthquakes may have unique signatures that can be represented by new high-dimensional features-Gauss curvature-based coordinates. Particularly, the observed earthquake catalog data are transformed into a number of pseudo physics quantities (i.e., energy, power, vorticity, and Laplacian) which turn into smooth surface-like information via spatio-temporal convolution, giving rise to the new high-dimensional coordinates. Validations with 40-year earthquakes in the West U.S. region show that the new coordinates appear to hold uniqueness for individual large earthquakes ([Formula: see text]), and the pseudo physics quantities help identify a customized data-driven prediction model. A Bayesian evolutionary algorithm in conjunction with flexible bases can identify a data-driven model, demonstrating its promising reproduction of individual large earthquake's location and magnitude. Results imply that an individual large earthquake can be distinguished and remembered while its best-so-far model can be customized by machine learning. This study paves a new way to data-driven automated evolution of individual earthquake prediction.

摘要

地震的统计描述提供了重要的概率信息,新兴的高精度观测技术和机器学习技术共同提高了我们对复杂地震行为的认识。然而,对于预测个别大地震的位置和规模,仍然存在着巨大的知识差距。本研究表明,个别大地震可能具有独特的特征,可以用新的高维特征——基于高斯曲率的坐标来表示。特别是,观测到的地震目录数据被转化为许多伪物理量(即能量、功率、涡度和拉普拉斯),通过时空卷积转化为光滑的表面状信息,从而产生新的高维坐标。对美国西部 40 年来的地震进行验证表明,新坐标似乎对个别大地震具有独特性([Formula: see text]),伪物理量有助于识别定制的数据驱动预测模型。贝叶斯进化算法结合灵活基可以识别数据驱动模型,证明其可以很好地再现个别大地震的位置和规模。研究结果表明,个别大地震可以被区分和记住,同时可以通过机器学习定制其最佳模型。本研究为数据驱动的个别地震预测的自动演化开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239c/9127126/2dd10d9f57ab/41598_2022_12575_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验