Suppr超能文献

机器学习揭示了跨多基因风险评分的环境因素与心脏代谢疾病之间的异质性关联。

Machine learning reveals heterogeneous associations between environmental factors and cardiometabolic diseases across polygenic risk scores.

作者信息

Naito Tatsuhiko, Inoue Kosuke, Namba Shinichi, Sonehara Kyuto, Suzuki Ken, Matsuda Koichi, Kondo Naoki, Toda Tatsushi, Yamauchi Toshimasa, Kadowaki Takashi, Okada Yukinori

机构信息

Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.

Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

出版信息

Commun Med (Lond). 2024 Sep 20;4(1):181. doi: 10.1038/s43856-024-00596-7.

Abstract

BACKGROUND

Although polygenic risk scores (PRSs) are expected to be helpful in precision medicine, it remains unclear whether high-PRS groups are more likely to benefit from preventive interventions for diseases. Recent methodological advancements enable us to predict treatment effects at the individual level.

METHODS

We employed causal forest to explore the relationship between PRSs and individual risk of diseases associated with certain environmental factors. Following simulations illustrating its performance, we applied our approach to investigate the individual risk of cardiometabolic diseases, including coronary artery diseases (CAD) and type 2 diabetes (T2D), associated with obesity and smoking among individuals from UK Biobank (UKB; n = 369,942) and BioBank Japan (BBJ; n = 149,421).

RESULTS

Here we find the heterogeneous association of obesity and smoking with diseases across PRS values, complicated by the multi-dimensional combination of individual characteristics such as age and sex. The highest positive correlations of PRSs and the exposure-related disease risks are observed between obesity and T2D in UKB and between smoking and CAD in BBJ (Spearman's ρ = 0.61 and 0.32, respectively). However, most relationships are weak or negative, suggesting that high-PRS groups will not necessarily benefit most from environmental factor prevention.

CONCLUSIONS

Our study highlights the importance of individual-level prediction of disease risks associated with target exposure in precision medicine.

摘要

背景

尽管多基因风险评分(PRSs)有望在精准医学中发挥作用,但高PRS组是否更有可能从疾病的预防性干预中获益仍不清楚。最近的方法学进展使我们能够在个体水平上预测治疗效果。

方法

我们采用因果森林来探索PRSs与与某些环境因素相关的疾病个体风险之间的关系。在通过模拟说明其性能之后,我们应用我们的方法来研究来自英国生物银行(UKB;n = 369,942)和日本生物银行(BBJ;n = 149,421)的个体中与肥胖和吸烟相关的心血管代谢疾病的个体风险,包括冠状动脉疾病(CAD)和2型糖尿病(T2D)。

结果

在这里,我们发现肥胖和吸烟与疾病的关联在PRS值之间存在异质性,年龄和性别等个体特征的多维组合使情况变得复杂。在UKB中,肥胖与T2D之间以及在BBJ中,吸烟与CAD之间观察到PRSs与暴露相关疾病风险的最高正相关(斯皮尔曼相关系数ρ分别为0.61和0.32)。然而,大多数关系是微弱的或负相关的,这表明高PRS组不一定能从环境因素预防中获益最多。

结论

我们的研究强调了在精准医学中对与目标暴露相关的疾病风险进行个体水平预测的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fedf/11415376/5a8ab636f9c6/43856_2024_596_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验