Chen Shiming, Deng Zhikang, Li Jiangxiao, Zhao Wenguang, Nan Bowen, Zuo Yue, Fang Jianjun, Huang Yuxiang, Yin Zu-Wei, Pan Feng, Yang Luyi
School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413927. doi: 10.1002/anie.202413927. Epub 2024 Oct 31.
Introducing fluorinated electrolyte additives to construct LiF-rich solid-electrolyte interphase (SEI) on Si-based anodes is proven an effective strategy for coping with its massive volume changes during cycling. However, most current research on fluorine-containing additives focuses on their thermodynamics of decomposition, lacking studies on the correlation between the molecular structure of additives and their decomposition kinetics. Herein, two fluorinated ester additives, diethyl fluoromalonate (F1DEM) and diethyl 2,2-difluoromalonate (F2DEM) were designed and synthesized. Through combining a wealth of characterizations and simulations, it is revealed that despite the similar reduction thermodynamics, the favorable reduction kinetics of single-fluorinated F1DEM facilitate a LiF-rich layer during the early stage of SEI formation, contributing to the formation of a more robust SEI on SiO anode compared to the difluorinated F2DEM. Consequently, the proposed additive achieves excellent cycling stability (84 % capacity retention after 1000 cycles) for 5 Ah 21700 cylindrical batteries under practical testing conditions. By unveiling the role of reaction kinetics, a long-overlooked aspect for the study of electrolyte additives, this work sheds light on how to construct a stable SEI on Si-based anodes.
在硅基负极上引入含氟电解质添加剂以构建富含LiF的固体电解质界面(SEI),已被证明是应对其在循环过程中大量体积变化的有效策略。然而,目前大多数关于含氟添加剂的研究都集中在它们的分解热力学上,缺乏对添加剂分子结构与其分解动力学之间相关性的研究。在此,设计并合成了两种含氟酯添加剂,氟代丙二酸二乙酯(F1DEM)和2,2-二氟代丙二酸二乙酯(F2DEM)。通过结合大量的表征和模拟,结果表明,尽管还原热力学相似,但单氟代的F1DEM具有良好的还原动力学,有助于在SEI形成的早期阶段形成富含LiF的层,与二氟代的F2DEM相比,能在SiO负极上形成更稳定的SEI。因此,在实际测试条件下,所提出的添加剂使5 Ah 21700圆柱形电池具有出色的循环稳定性(1000次循环后容量保持率为84%)。通过揭示反应动力学的作用,这一长期被忽视的电解质添加剂研究方面,这项工作为如何在硅基负极上构建稳定的SEI提供了思路。