Kiranmai Gaddam, Alam Aszad, Chameettachal Shibu, Khandelwal Mudrika, Pati Falguni
Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India.
Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India.
ACS Appl Mater Interfaces. 2024 Oct 2;16(39):52008-52022. doi: 10.1021/acsami.4c09505. Epub 2024 Sep 21.
A novel avenue for advancing our understanding of kidney disease mechanisms and developing targeted therapeutics lies in overcoming the limitations of the existing models. Traditional animal models, while useful, do not fully capture the intricacies of human kidney physiology and pathophysiology. Tissue engineering offers a promising solution, yet current models often fall short in replicating the complex microarchitecture and biochemical milieu of the kidney. To address this challenge, we propose the development of a sophisticated glomerular filtration barrier (GFB) utilizing advanced biomaterials and a kidney decellularized extracellular matrix (kdECM). In our approach, we employ a bacterial cellulose membrane (BC) as a scaffold, providing a robust framework for cell growth and interaction. Coating this scaffold with kdECM hydrogel derived from caprine kidney tissue via a detergent-free decellularization method ensures the preservation of vital extracellular matrix proteins crucial for cellular compatibility and signaling. Our engineered GFB not only supports the growth of endothelial and podocyte cells but also exhibits the presence of key markers such as CD31 and nephrin, indicating successful cellular integration. Furthermore, the expression of collagen IV, an essential extracellular matrix (ECM) protein, validates the fidelity of our model in simulating cellular interactions within a kdECM matrix. Additionally, we assessed the filtration efficiency of the developed GFB model using albumin, a standard protein, to evaluate its performance under conditions that closely mimic the native physiological environment. This innovative approach, which faithfully recapitulates the native microenvironment of the glomerulus, holds immense promise for elucidating kidney disease mechanisms, conducting permeability studies, and advancing personalized therapeutic strategies. By leveraging cutting-edge biomaterials and tissue-specific coculture technology, this study can be further extended to develop GFB for the treatment of renal diseases, ultimately improving patient outcomes and quality of life.
推进我们对肾脏疾病机制的理解并开发靶向治疗方法的一条新途径在于克服现有模型的局限性。传统动物模型虽然有用,但不能完全捕捉人类肾脏生理和病理生理的复杂性。组织工程提供了一个有前景的解决方案,但目前的模型在复制肾脏复杂的微结构和生化环境方面往往存在不足。为应对这一挑战,我们提议利用先进的生物材料和肾脏脱细胞外基质(kdECM)开发一种复杂的肾小球滤过屏障(GFB)。在我们的方法中,我们使用细菌纤维素膜(BC)作为支架,为细胞生长和相互作用提供一个强大的框架。通过无洗涤剂脱细胞方法用源自山羊肾脏组织的kdECM水凝胶涂覆该支架,可确保保留对细胞相容性和信号传导至关重要的重要细胞外基质蛋白。我们构建的GFB不仅支持内皮细胞和足细胞的生长,还显示出关键标志物如CD31和nephrin的存在,表明细胞成功整合。此外,IV型胶原蛋白(一种重要的细胞外基质(ECM)蛋白)的表达验证了我们的模型在模拟kdECM基质内细胞相互作用方面的保真度。此外,我们使用白蛋白(一种标准蛋白质)评估了所构建的GFB模型的过滤效率,以评估其在紧密模拟天然生理环境的条件下的性能。这种创新方法忠实地再现了肾小球的天然微环境,在阐明肾脏疾病机制、进行通透性研究和推进个性化治疗策略方面具有巨大潜力。通过利用前沿生物材料和组织特异性共培养技术,这项研究可以进一步扩展以开发用于治疗肾脏疾病的GFB,最终改善患者的治疗效果和生活质量。