Suppr超能文献

Prospect for detecting magnetism in two-dimensional perovskite oxides by electron magnetic circular dichroism.

作者信息

Ren Jie, Zhong Xiaoyan

机构信息

TRACE EM Unit and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China; City University of Hong Kong Matter Science Research Institute (Futian), Shenzhen 518048, PR China; Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, PR China.

TRACE EM Unit and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China; City University of Hong Kong Matter Science Research Institute (Futian), Shenzhen 518048, PR China; Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, PR China.

出版信息

Micron. 2024 Dec;187:103718. doi: 10.1016/j.micron.2024.103718. Epub 2024 Sep 16.

Abstract

Two-dimensional (2D) magnets, especially strongly correlated 2D transition-metal perovskite oxides, have attracted significant attention due to their intriguing electromagnetic properties for potential applications in spintronic devices. Potentially electron magnetic circular dichroism (EMCD) under zone axis conditions can provide three-dimensional components of magnetic moments in 2D materials, but the collection efficiency and the signal-to-noise ratio for out-of-plane (OOP) components is limited due to the limited collection angle. Here we conducted a comprehensive computational simulation to optimize the experimental setting of EMCD for detecting the OOP components of magnetic moments in three beam conditions (3BCs) on 2D perovskite oxides LaSrMnO (LSMO) in a TEM. The key parameters are sample thickness, accelerating voltage, Sr doping concentration, collection semi-angle and position, and sample orientation including systematic reflections excited and tilt angle. Our simulation results demonstrate that the relative dynamical diffraction coefficients of Mn OOP EMCD of LaMnO with a thickness ranging from 1 unit cell (uc) to 4 uc can be optimized in a 3BC with (110) systematic reflections excited and a relatively large collection semi-angle of 19 mrad at the relatively low accelerating voltage of 80 kV. In most cases, the relative dynamic diffraction coefficients for LaSrMnO with the thickness ranging from 1 uc to 4 uc decrease with the increase of the Sr doping concentrations. The optimal tilt angle from a zone axis to a 3BC is 18° for the cases of the LSMO thickness of 2 uc, 3 uc and 4 uc, and 22° for the monolayer LSMO. Our work provides the theoretical simulation foundation for optimized EMCD experiments for measuring OOP components of magnetic moments in 2D transition-metal perovskite oxides.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验