On Thomas J, Xu Yuan, Chen Jiuxu, Gonzalez-Romo Nicolas I, Alcantar-Garibay Oscar, Bhanushali Jay, Park Wonhyoung, Wanebo John E, Grande Andrew W, Tanikawa Rokuya, Ellegala Dilantha B, Li Baoxin, Santello Marco, Lawton Michael T, Preul Mark C
The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.
School of Computing and Augmented Intelligence, Arizona State University, Tempe, Arizona, USA.
World Neurosurg. 2024 Dec;192:e217-e232. doi: 10.1016/j.wneu.2024.09.069. Epub 2024 Oct 5.
Deep learning enables precise hand tracking without the need for physical sensors, allowing for unsupervised quantitative evaluation of surgical motion and tasks. We quantitatively assessed the hand motions of experienced cerebrovascular neurosurgeons during simulated microvascular anastomosis using deep learning. We explored the extent to which surgical motion data differed among experts.
A deep learning detection system tracked 21 landmarks corresponding to digit joints and the wrist on each hand of 5 expert cerebrovascular neurosurgeons. Tracking data for each surgeon were analyzed over long and short time intervals to examine gross movements and micromovements, respectively. Quantitative algorithms assessed the economy and flow of motion by calculating mean movement distances from the baseline median landmark coordinates and median times between sutures, respectively.
Tracking data correlated with specific surgical actions observed in microanastomosis video analysis. Economy of motion during suturing was calculated as 19, 26, 29, 27, and 28 pixels for surgeons 1, 2, 3, 4, and 5, respectively. Flow of motion during microanastomosis was 31.96, 29.40, 28.90, 7.37, and 47.21 seconds for surgeons 1, 2, 3, 4, and 5, respectively.
Hand tracking data showed similarities among experts, with low movements from baseline, minimal excess motion, and rhythmic suturing patterns. The data revealed unique patterns related to each expert's habits and techniques. The results showed that surgical motion can be correlated with hand motion and assessed using mathematical algorithms. We also demonstrated the feasibility and potential of deep learning-based motion detection to enhance surgical training.
深度学习能够在无需物理传感器的情况下实现精确的手部跟踪,从而对手术动作和任务进行无监督的定量评估。我们使用深度学习对经验丰富的脑血管神经外科医生在模拟微血管吻合术中的手部动作进行了定量评估。我们探讨了手术动作数据在专家之间的差异程度。
一个深度学习检测系统跟踪了5位脑血管神经外科专家每只手上对应手指关节和手腕的21个标志点。分别在长时间段和短时间段内分析每位外科医生的跟踪数据,以检查总体动作和微动作。定量算法分别通过计算相对于基线中位标志点坐标的平均移动距离和缝合之间的中位时间来评估动作的经济性和流畅性。
跟踪数据与在微血管吻合视频分析中观察到的特定手术动作相关。外科医生1、2、3、4和5在缝合过程中的动作经济性分别计算为19、26、29、27和28像素。外科医生1、2、3、4和5在微血管吻合过程中的动作流畅性分别为31.96、29.40、28.90、7.37和47.21秒。
手部跟踪数据显示专家之间存在相似性,基线移动量低,多余动作极少,且缝合模式有节奏。数据揭示了与每位专家的习惯和技术相关的独特模式。结果表明,手术动作可以与手部动作相关联,并使用数学算法进行评估。我们还证明了基于深度学习的动作检测在加强手术训练方面的可行性和潜力。