Suppr超能文献

具有非对称约束输入的未知非线性系统安全最优模糊跟踪控制的自适应评判设计

Adaptive critic design for safety-optimal FTC of unknown nonlinear systems with asymmetric constrained-input.

作者信息

Zhang Dehua, Wang Yuchen, Meng Lei, Yan Jiayuan, Qin Chunbin

机构信息

School of Artificial Intelligence, Henan University, Zhengzhou, 450046, China.

出版信息

ISA Trans. 2024 Dec;155:309-318. doi: 10.1016/j.isatra.2024.09.018. Epub 2024 Sep 19.

Abstract

Safe fault tolerant control is one of the key technologies to improve the reliability of dynamic complex nonlinear systems with limited inputs, which is hard to solve and definitely a great challenge to tackle. Thus the paper presents a novel safety-optimal FTC (Fault Tolerant Control) approach for a category of completely unknown nonlinear systems incorporating actuator fault and asymmetric constrained-input, which can guarantee the system's operation within a safe range while showcasing optimal performance. Firstly, a CBF (Control Barrier Function) is incorporated into the cost function to penalize unsafe behaviors, and then we translate the intractable safety-optimal FTC problem into a differential ZSG (Zero-Sum Game) problem by defining the control input and the actuator fault as two opposing sides. Secondly, a neural-network-based identifier is employed to reconstruct system dynamics using system data, and the resolution of handling asymmetric constrained-input with the introduced non-quadratic cost function is achieved through the design of an adaptive critic scheme, aiming to reduce computational expenses accordingly. Finally, through the theoretical stability analysis, it is demonstrated that all signals in the closed-loop system are consistently UUB (Uniformly Ultimately Bounded). Furthermore, the proposed method's effectiveness is also verified in the simulation experiments conducted on a model of a single-link robotic arm system with actuator failure. The result shows that the algorithm can fulfill the safety-optimal demand of fault tolerant control in fault system with asymmetric constrained-input.

摘要

安全容错控制是提高具有有限输入的动态复杂非线性系统可靠性的关键技术之一,该问题难以解决,无疑是一个巨大的挑战。因此,本文针对一类包含执行器故障和非对称约束输入的完全未知非线性系统,提出了一种新颖的安全最优容错控制(FTC)方法,该方法能够保证系统在安全范围内运行,同时展现出最优性能。首先,将控制障碍函数(CBF)纳入成本函数以惩罚不安全行为,然后通过将控制输入和执行器故障定义为两个对立方,将棘手的安全最优FTC问题转化为微分零和博弈(ZSG)问题。其次,采用基于神经网络的识别器利用系统数据重构系统动态特性,通过设计自适应评判器方案来解决引入非二次成本函数时处理非对称约束输入的问题,旨在相应地降低计算成本。最后,通过理论稳定性分析表明,闭环系统中的所有信号均一致全局一致最终有界(UUB)。此外,在具有执行器故障的单连杆机器人手臂系统模型上进行的仿真实验也验证了所提方法的有效性。结果表明,该算法能够满足具有非对称约束输入的故障系统中容错控制的安全最优需求。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验