Suppr超能文献

一种用于识别甲状腺乳头状癌无病生存预后基因特征的新型计算病理学方法。

A novel computational pathology approach for identifying gene signatures prognostic of disease-free survival for papillary thyroid carcinomas.

机构信息

Dept. of Biomedical Engineering, Case Western Reserve University, OH, United States.

Wallace H. Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, United States.

出版信息

Eur J Cancer. 2024 Nov;212:114326. doi: 10.1016/j.ejca.2024.114326. Epub 2024 Sep 17.

Abstract

INTRODUCTION

Papillary thyroid carcinoma (PTC) is the most prevalent form of thyroid cancer, with the classical and follicular variants representing most cases. Despite generally favorable prognoses, approximately 10% of patients experience recurrence post-surgery and radioactive iodine therapy. Attempts to stratify risk of recurrence have relied on gene expression-based prognostic and predictive signatures with a focus on mutations of well-known driver genes, while hallmarks of tumor morphology have been ignored.

OBJECTIVES

We introduce a new computational pathology approach to develop prognostic gene signatures for PTC that is informed by quantitative features of tumor and immune cell morphology.

METHODS

We quantified nuclear and immune-related features of tumor morphology to develop a pathomic signature, which was then used to inform an RNA-expression signature model provides a notable advancement in risk stratification compared to both standalone and pathology-informed gene-expression signatures.

RESULTS

There was a 17.8% improvement in the C-index (from 0.605 to 0.783) for 123 cPTCs and 15% (from 0.576 to 0.726) for 38 fvPTCs compared to the standalone gene-expression signature. Hazard ratios also improved for cPTCs from 0.89 (0.67,0.99) to 4.43 (3.65,6.68) and fvPTC from 0.98 (0.76,1.32) to 2.28 (1.87,3.64). We validated the image-based risk model on an independent cohort of 32 cPTCs with hazard ratio 1.8 (1.534,2.167).

摘要

简介

甲状腺乳头状癌(PTC)是最常见的甲状腺癌类型,经典型和滤泡型变体占大多数病例。尽管预后通常良好,但约 10%的患者在手术后和放射性碘治疗后会复发。分层复发风险的尝试依赖于基于基因表达的预后和预测特征,重点是研究知名驱动基因的突变,而肿瘤形态学特征则被忽视。

目的

我们引入了一种新的计算病理学方法,通过肿瘤和免疫细胞形态的定量特征来开发 PTC 的预后基因特征。

方法

我们量化了肿瘤形态的核和免疫相关特征,以开发一种病理形态特征签名,然后使用该签名来告知 RNA 表达特征模型,与独立的基因表达特征签名和病理学提示的基因表达特征签名相比,该模型在风险分层方面提供了显著的进展。

结果

与独立的基因表达特征签名相比,在 123 例 cPTC 和 38 例 fvPTC 中,C 指数(从 0.605 提高到 0.783)提高了 17.8%;在 cPTC 中,危险比从 0.89(0.67,0.99)提高到 4.43(3.65,6.68),在 fvPTC 中,危险比从 0.98(0.76,1.32)提高到 2.28(1.87,3.64)。我们在一个由 32 例 cPTC 组成的独立队列中验证了基于图像的风险模型,危险比为 1.8(1.534,2.167)。

结论

该研究表明,基于肿瘤形态学的基因表达特征签名可以提高 PTC 复发风险的预测能力。

相似文献

2
A novel RNA sequencing-based risk score model to predict papillary thyroid carcinoma recurrence.
Clin Exp Metastasis. 2020 Apr;37(2):257-267. doi: 10.1007/s10585-019-10011-4. Epub 2019 Dec 2.
3
Low expression of  in papillary thyroid carcinoma may correlate with poor prognosis but high immune cell infiltration.
Future Oncol. 2022 Jan;18(3):333-348. doi: 10.2217/fon-2020-1183. Epub 2021 Nov 10.
4
MicroRNA signature predicts survival in papillary thyroid carcinoma.
J Cell Biochem. 2019 Oct;120(10):17050-17058. doi: 10.1002/jcb.28966. Epub 2019 May 17.
6
Development of prognostic signatures for intermediate-risk papillary thyroid cancer.
BMC Cancer. 2016 Sep 15;16(1):736. doi: 10.1186/s12885-016-2771-6.
7
GADD45B Transcript Is a Prognostic Marker in Papillary Thyroid Carcinoma Patients Treated With Total Thyroidectomy and Radioiodine Therapy.
Front Endocrinol (Lausanne). 2020 Apr 30;11:269. doi: 10.3389/fendo.2020.00269. eCollection 2020.
8
A novel gene panel for prediction of lymph-node metastasis and recurrence in patients with thyroid cancer.
Surgery. 2020 Jan;167(1):73-79. doi: 10.1016/j.surg.2019.06.058. Epub 2019 Nov 9.
9
Identifying the tumor-progressive gene expression profile in high-risk papillary thyroid cancer.
Surg Today. 2021 Oct;51(10):1703-1712. doi: 10.1007/s00595-021-02262-0. Epub 2021 Mar 17.
10
Tumor Mutation Burden Predicts Relapse in Papillary Thyroid Carcinoma With Changes in Genes and Immune Microenvironment.
Front Endocrinol (Lausanne). 2021 Jun 23;12:674616. doi: 10.3389/fendo.2021.674616. eCollection 2021.

引用本文的文献

1
Artificial intelligence in digital pathology - time for a reality check.
Nat Rev Clin Oncol. 2025 Apr;22(4):283-291. doi: 10.1038/s41571-025-00991-6. Epub 2025 Feb 11.

本文引用的文献

1
Estimating disease-free survival of thyroid cancer based on novel cuprotosis-related gene model.
Front Endocrinol (Lausanne). 2023 Sep 8;14:1209172. doi: 10.3389/fendo.2023.1209172. eCollection 2023.
2
Current status of machine learning in thyroid cytopathology.
J Pathol Inform. 2023 Apr 1;14:100309. doi: 10.1016/j.jpi.2023.100309. eCollection 2023.
3
Analysis of the regulatory mechanisms of prognostic immune factors in thyroid cancer.
Front Oncol. 2022 Dec 14;12:1059591. doi: 10.3389/fonc.2022.1059591. eCollection 2022.
5
A pan-cancer analysis of the oncogenic role of leucine zipper protein 2 in human cancer.
Exp Hematol Oncol. 2022 Sep 15;11(1):55. doi: 10.1186/s40164-022-00313-x.
6
Pan-cancer integrative histology-genomic analysis via multimodal deep learning.
Cancer Cell. 2022 Aug 8;40(8):865-878.e6. doi: 10.1016/j.ccell.2022.07.004.
7
A deep learning-based algorithm for tall cell detection in papillary thyroid carcinoma.
PLoS One. 2022 Aug 9;17(8):e0272696. doi: 10.1371/journal.pone.0272696. eCollection 2022.
9
Histopathological Assessment for Papillary Thyroid Carcinoma.
Methods Mol Biol. 2022;2534:93-108. doi: 10.1007/978-1-0716-2505-7_7.
10
Overview of the 2022 WHO Classification of Thyroid Neoplasms.
Endocr Pathol. 2022 Mar;33(1):27-63. doi: 10.1007/s12022-022-09707-3. Epub 2022 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验