Dept. of Biomedical Engineering, Case Western Reserve University, OH, United States.
Wallace H. Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, United States.
Eur J Cancer. 2024 Nov;212:114326. doi: 10.1016/j.ejca.2024.114326. Epub 2024 Sep 17.
Papillary thyroid carcinoma (PTC) is the most prevalent form of thyroid cancer, with the classical and follicular variants representing most cases. Despite generally favorable prognoses, approximately 10% of patients experience recurrence post-surgery and radioactive iodine therapy. Attempts to stratify risk of recurrence have relied on gene expression-based prognostic and predictive signatures with a focus on mutations of well-known driver genes, while hallmarks of tumor morphology have been ignored.
We introduce a new computational pathology approach to develop prognostic gene signatures for PTC that is informed by quantitative features of tumor and immune cell morphology.
We quantified nuclear and immune-related features of tumor morphology to develop a pathomic signature, which was then used to inform an RNA-expression signature model provides a notable advancement in risk stratification compared to both standalone and pathology-informed gene-expression signatures.
There was a 17.8% improvement in the C-index (from 0.605 to 0.783) for 123 cPTCs and 15% (from 0.576 to 0.726) for 38 fvPTCs compared to the standalone gene-expression signature. Hazard ratios also improved for cPTCs from 0.89 (0.67,0.99) to 4.43 (3.65,6.68) and fvPTC from 0.98 (0.76,1.32) to 2.28 (1.87,3.64). We validated the image-based risk model on an independent cohort of 32 cPTCs with hazard ratio 1.8 (1.534,2.167).
甲状腺乳头状癌(PTC)是最常见的甲状腺癌类型,经典型和滤泡型变体占大多数病例。尽管预后通常良好,但约 10%的患者在手术后和放射性碘治疗后会复发。分层复发风险的尝试依赖于基于基因表达的预后和预测特征,重点是研究知名驱动基因的突变,而肿瘤形态学特征则被忽视。
我们引入了一种新的计算病理学方法,通过肿瘤和免疫细胞形态的定量特征来开发 PTC 的预后基因特征。
我们量化了肿瘤形态的核和免疫相关特征,以开发一种病理形态特征签名,然后使用该签名来告知 RNA 表达特征模型,与独立的基因表达特征签名和病理学提示的基因表达特征签名相比,该模型在风险分层方面提供了显著的进展。
与独立的基因表达特征签名相比,在 123 例 cPTC 和 38 例 fvPTC 中,C 指数(从 0.605 提高到 0.783)提高了 17.8%;在 cPTC 中,危险比从 0.89(0.67,0.99)提高到 4.43(3.65,6.68),在 fvPTC 中,危险比从 0.98(0.76,1.32)提高到 2.28(1.87,3.64)。我们在一个由 32 例 cPTC 组成的独立队列中验证了基于图像的风险模型,危险比为 1.8(1.534,2.167)。
该研究表明,基于肿瘤形态学的基因表达特征签名可以提高 PTC 复发风险的预测能力。