Suppr超能文献

基于多模态深度学习的泛癌综合组织学-基因组分析。

Pan-cancer integrative histology-genomic analysis via multimodal deep learning.

机构信息

Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Mass General Hospital, Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Cancer Data Science Program, Dana-Farber/Harvard Cancer Institute, Boston, MA, USA.

Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Mass General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Cancer Data Science Program, Dana-Farber/Harvard Cancer Institute, Boston, MA, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA.

出版信息

Cancer Cell. 2022 Aug 8;40(8):865-878.e6. doi: 10.1016/j.ccell.2022.07.004.

Abstract

The rapidly emerging field of computational pathology has demonstrated promise in developing objective prognostic models from histology images. However, most prognostic models are either based on histology or genomics alone and do not address how these data sources can be integrated to develop joint image-omic prognostic models. Additionally, identifying explainable morphological and molecular descriptors from these models that govern such prognosis is of interest. We use multimodal deep learning to jointly examine pathology whole-slide images and molecular profile data from 14 cancer types. Our weakly supervised, multimodal deep-learning algorithm is able to fuse these heterogeneous modalities to predict outcomes and discover prognostic features that correlate with poor and favorable outcomes. We present all analyses for morphological and molecular correlates of patient prognosis across the 14 cancer types at both a disease and a patient level in an interactive open-access database to allow for further exploration, biomarker discovery, and feature assessment.

摘要

计算病理学是一个迅速发展的领域,它在从组织学图像中开发客观的预后模型方面显示出了前景。然而,大多数预后模型要么仅基于组织学,要么仅基于基因组学,而没有解决如何整合这些数据源来开发联合图像组学预后模型的问题。此外,从这些模型中识别出解释性的形态学和分子描述符来预测预后也是很有意义的。我们使用多模态深度学习联合研究了 14 种癌症类型的病理全切片图像和分子谱数据。我们的弱监督多模态深度学习算法能够融合这些异构模态,以预测结果,并发现与不良和良好预后相关的预后特征。我们在一个交互式的开放访问数据库中,在疾病和患者两个层面上,为 14 种癌症类型的患者预后的形态学和分子相关性提供了所有分析,以允许进一步的探索、生物标志物的发现和特征评估。

相似文献

5
Predicting cancer outcomes from histology and genomics using convolutional networks.使用卷积网络从组织学和基因组学预测癌症结局。
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E2970-E2979. doi: 10.1073/pnas.1717139115. Epub 2018 Mar 12.

引用本文的文献

1
Multimodal integration strategies for clinical application in oncology.肿瘤学临床应用中的多模态整合策略
Front Pharmacol. 2025 Aug 20;16:1609079. doi: 10.3389/fphar.2025.1609079. eCollection 2025.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验