Suppr超能文献

KEAP1 的传感器系统能够分别特异性检测体内的氧化应激和亲电应激。

Sensor systems of KEAP1 uniquely detecting oxidative and electrophilic stresses separately In vivo.

机构信息

Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan; Department of Biochemistry & Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.

Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.

出版信息

Redox Biol. 2024 Nov;77:103355. doi: 10.1016/j.redox.2024.103355. Epub 2024 Sep 17.

Abstract

In the KEAP1-NRF2 stress response system, KEAP1 acts as a sensor for oxidative and electrophilic stresses through formation of S-S bond and C-S bond, respectively. Of the many questions left related to the sensor activity, following three appear important; whether these KEAP1 sensor systems are operating in vivo, whether oxidative and electrophilic stresses are sensed by the similar or distinct systems, and how KEAP1 equips highly sensitive mechanisms detecting oxidative and electrophilic stresses in vivo. To address these questions, we conducted a series of analyses utilizing KEAP1-cysteine substitution mutant mice, conditional selenocysteine-tRNA (Trsp) knockout mice, and human cohort whole genome sequence (WGS) data. Firstly, the Trsp-knockout provokes severe deficiency of selenoproteins and compensatory activation of NRF2. However, mice lacking homozygously a pair of critical oxidative stress sensor cysteine residues of KEAP1 fail to activate NRF2 in the Trsp-knockout livers. Secondly, this study provides evidence for the differential utilization of KEAP1 sensors for oxidative and electrophilic stresses in vivo. Thirdly, theoretical calculations show that the KEAP1 dimer equips quite sensitive sensor machinery in which modification of a single molecule of KEAP1 within the dimer is sufficient to affect the activity. WGS examinations of rare variants identified seven non-synonymous variants in the oxidative stress sensors in human KEAP1, while no variant was found in electrophilic sensor cysteine residues, supporting the fail-safe nature of the KEAP1 oxidative stress sensor activity. These results provide valuable information for our understanding how mammals respond to oxidative and electrophilic stresses efficiently.

摘要

在 KEAP1-NRF2 应激反应系统中,KEAP1 通过形成 S-S 键和 C-S 键分别作为氧化应激和亲电应激的传感器。在与传感器活性相关的众多问题中,以下三个问题似乎很重要:KEAP1 传感器系统是否在体内运行,氧化应激和亲电应激是否通过相似或不同的系统感知,以及 KEAP1 如何在体内配备高度敏感的机制来检测氧化应激和亲电应激。为了解决这些问题,我们利用 KEAP1-半胱氨酸取代突变小鼠、条件性硒代半胱氨酸 tRNA(Trsp)敲除小鼠和人类全基因组序列(WGS)数据进行了一系列分析。首先,Trsp 敲除会严重缺乏硒蛋白并代偿性激活 NRF2。然而,一对关键氧化应激传感器半胱氨酸残基的 KEAP1 纯合缺失的小鼠在 Trsp 敲除肝脏中未能激活 NRF2。其次,本研究为体内氧化应激和亲电应激的 KEAP1 传感器的差异利用提供了证据。第三,理论计算表明,KEAP1 二聚体配备了相当敏感的传感器机制,其中二聚体中单个 KEAP1 分子的修饰足以影响其活性。对人类 KEAP1 中氧化应激传感器的罕见变异进行 WGS 检测,发现了七个非同义变异,而在亲电传感器半胱氨酸残基中没有发现变异,这支持了 KEAP1 氧化应激传感器活性的失效安全性质。这些结果为我们理解哺乳动物如何有效地应对氧化应激和亲电应激提供了有价值的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cbe/11447412/08cbe9195b6e/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验