El-Kadi Joseph, Kinhal Krishna V, Liedtke Luc, Pinzón-Ramírez Juan Luis, Smith Collin, Torrente-Murciano Laura
Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive , Cambridge CB3 0AS, UK.
Philos Trans A Math Phys Eng Sci. 2024 Nov 9;382(2282):20230270. doi: 10.1098/rsta.2023.0270. Epub 2024 Sep 23.
The development of new technologies for the synthesis of green ammonia using exclusively hydrogen from water and nitrogen from air in processes driven exclusively by renewable energy is poised to decarbonize the production of this important molecule for the production of green fertilizers as well as offering a carbon-free vector for the long-term storage of renewable energy. In this article, we explore and quantify the CO emission reduction potential of green ammonia, evaluating how it can facilitate the decarbonization of other hard-to-abate industrial processes such as steel, glass and cement industries. Green ammonia can be used as a direct replacement of fossil fuels used as energy sources in the different processes. In addition, green ammonia can facilitate the electrification of the processes (so-called Power-to-X) by storing renewable energy in the long term to balance a decarbonized grid against intermittent renewable energy supplies. This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.
利用仅来自水的氢和仅来自空气的氮,在完全由可再生能源驱动的过程中合成绿色氨的新技术的发展,有望使这种用于生产绿色肥料的重要分子的生产脱碳,并为可再生能源的长期储存提供无碳载体。在本文中,我们探索并量化了绿色氨的二氧化碳减排潜力,评估了它如何促进钢铁、玻璃和水泥等其他难以减排的工业过程的脱碳。绿色氨可以直接替代不同过程中用作能源的化石燃料。此外,绿色氨可以通过长期储存可再生能源来平衡脱碳电网与间歇性可再生能源供应,从而促进这些过程的电气化(即所谓的“电力到X”)。本文是“未来化学工业的绿色碳”讨论会议题的一部分。