Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.
Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.
Mol Microbiol. 2024 Oct;122(4):583-597. doi: 10.1111/mmi.15314. Epub 2024 Sep 22.
Mycobacterium abscessus (Mab) is highly drug resistant, and understanding regulation of antibiotic resistance is critical to future antibiotic development. Regulatory mechanisms controlling Mab's β-lactamase (Bla) that mediates β-lactam resistance remain unknown. S. aureus encodes a prototypical protease-mediated two-component system BlaRI regulating the β-lactamase BlaZ. BlaR binds extracellular β-lactams, activating an intracellular peptidase domain which cleaves BlaI to derepress blaZ. Mycobacterium tuberculosis (Mtb) encodes homologs of BlaRI (which we will denote as BlaIR to reflect the inverted gene order in mycobacteria) that regulate not only the Mtb β-lactamase, blaC, but also additional genes related to respiration. We identified orthologs of blaIR in Mab and hypothesized that they regulate bla. Surprisingly, neither deletion of blaIR nor overexpression of only blaI altered bla expression or β-lactam susceptibility. However, BlaI did bind to conserved motifs upstream of several Mab genes involved in respiration, yielding a putative regulon that partially overlapped with BlaI. Prompted by evidence that respiration inhibitors including clofazimine induce the BlaI regulon in Mtb, we found that clofazimine triggers induction of blaIR and its downstream regulon. Highlighting an important role for BlaIR in adapting to disruptions in energy metabolism, constitutive repression of the BlaI regulon rendered Mab highly susceptible to clofazimine. In addition to our unexpected findings that BlaIR does not regulate β-lactam resistance, this study highlights the novel role of mycobacterial BlaRI-type regulators in regulating electron transport and respiration.
脓肿分枝杆菌(Mab)具有高度的耐药性,了解抗生素耐药性的调节机制对于未来抗生素的开发至关重要。目前尚不清楚控制 Mab 介导β-内酰胺耐药的β-内酰胺酶(Bla)的调节机制。金黄色葡萄球菌编码了一种典型的由蛋白酶介导的两成分系统 BlaRI,该系统调节β-内酰胺酶 BlaZ。BlaR 结合细胞外β-内酰胺,激活细胞内肽酶结构域,将 BlaI 切割以解除 blaZ 的抑制。结核分枝杆菌(Mtb)编码了 BlaRI 的同源物(我们将其表示为 BlaIR,以反映分枝杆菌中基因顺序的倒置),这些同源物不仅调节 Mtb 的β-内酰胺酶 blaC,还调节与呼吸有关的其他基因。我们在 Mab 中鉴定了 blaIR 的同源物,并假设它们调节 bla。令人惊讶的是,缺失 blaIR 或仅过表达 blaI 都不会改变 bla 的表达或β-内酰胺的敏感性。然而,BlaI 确实与 Mab 中几个参与呼吸的基因上游的保守基序结合,产生了一个可能的调控基因,该调控基因与 BlaI 部分重叠。鉴于证据表明包括氯法齐明在内的呼吸抑制剂在 Mtb 中诱导 BlaI 调控基因,我们发现氯法齐明触发 blaIR 及其下游调控基因的诱导。BlaIR 在适应能量代谢中断方面的重要作用突出表明,BlaI 调控基因的组成性抑制使 Mab 对氯法齐明高度敏感。除了我们关于 BlaIR 不调节β-内酰胺耐药性的意外发现外,这项研究还强调了分枝杆菌 BlaRI 型调节剂在调节电子传递和呼吸中的新作用。