Gladka Monika M, Kohela Arwa, de Leeuw Anne E, Molenaar Bas, Versteeg Danielle, Kooijman Lieneke, van Geldorp Mariska, van Ham Willem B, Caliandro Rocco, Haigh Jody J, van Veen Toon A B, van Rooij Eva
Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
Cardiovasc Res. 2024 Dec 4;120(15):1869-1883. doi: 10.1093/cvr/cvae163.
Intracellular calcium (Ca2+) overload is known to play a critical role in the development of cardiac dysfunction. Despite the remarkable improvement in managing the progression of heart disease, developing effective therapies for heart failure (HF) remains a challenge. A better understanding of molecular mechanisms that maintain proper Ca2+ levels and contractility in the injured heart could be of therapeutic value.
Here, we report that transcription factor zinc finger E-box-binding homeobox 2 (ZEB2) is induced by hypoxia-inducible factor 1-alpha (HIF1α) in hypoxic cardiomyocytes and regulates a network of genes involved in Ca2+ handling and contractility during ischaemic heart disease. Gain- and loss-of-function studies in genetic mouse models revealed that ZEB2 expression in cardiomyocytes is necessary and sufficient to protect the heart against ischaemia-induced diastolic dysfunction and structural remodelling. Moreover, RNA sequencing of ZEB2-overexpressing (Zeb2 cTg) hearts post-injury implicated ZEB2 in regulating numerous Ca2+-handling and contractility-related genes. Mechanistically, ZEB2 overexpression increased the phosphorylation of phospholamban at both serine-16 and threonine-17, implying enhanced activity of sarcoplasmic reticulum Ca2+-ATPase (SERCA2a), thereby augmenting SR Ca2+ uptake and contractility. Furthermore, we observed a decrease in the activity of Ca2+-dependent calcineurin/NFAT signalling in Zeb2 cTg hearts, which is the main driver of pathological cardiac remodelling. On a post-transcriptional level, we showed that ZEB2 expression can be regulated by the cardiomyocyte-specific microRNA-208a (miR-208a). Blocking the function of miR-208a with anti-miR-208a increased ZEB2 expression in the heart and effectively protected from the development of pathological cardiac hypertrophy.
Together, we present ZEB2 as a central regulator of contractility and Ca2+-handling components in the mammalian heart. Further mechanistic understanding of the role of ZEB2 in regulating Ca2+ homeostasis in cardiomyocytes is an essential step towards the development of improved therapies for HF.
细胞内钙(Ca2+)超载在心脏功能障碍的发生发展中起关键作用。尽管在控制心脏病进展方面取得了显著进展,但开发有效的心力衰竭(HF)治疗方法仍然是一项挑战。更好地理解维持受损心脏中适当Ca2+水平和收缩性的分子机制可能具有治疗价值。
在此,我们报告转录因子锌指E盒结合同源框2(ZEB2)在缺氧心肌细胞中由缺氧诱导因子1α(HIF1α)诱导,并在缺血性心脏病期间调节参与Ca2+处理和收缩性的基因网络。在基因小鼠模型中进行的功能获得和丧失研究表明,心肌细胞中ZEB2的表达对于保护心脏免受缺血诱导的舒张功能障碍和结构重塑是必要且充分的。此外,损伤后ZEB2过表达(Zeb2 cTg)心脏的RNA测序表明ZEB2参与调节众多与Ca2+处理和收缩性相关的基因。机制上,ZEB2过表达增加了受磷蛋白在丝氨酸16和苏氨酸17处的磷酸化,这意味着肌浆网Ca2+ -ATP酶(SERCA2a)的活性增强,从而增强了肌浆网Ca2+摄取和收缩性。此外,我们观察到Zeb2 cTg心脏中Ca2+依赖性钙调神经磷酸酶/NFAT信号的活性降低,而该信号是病理性心脏重塑的主要驱动因素。在转录后水平,我们表明ZEB2的表达可由心肌细胞特异性微小RNA - 208a(miR - 208a)调节。用抗miR - 208a阻断miR - 208a的功能可增加心脏中ZEB2的表达,并有效防止病理性心脏肥大的发展。
总之,我们提出ZEB2是哺乳动物心脏收缩性和Ca2+处理成分的核心调节因子。进一步从机制上理解ZEB2在调节心肌细胞Ca2+稳态中的作用是开发改进的HF治疗方法的重要一步。