Khan Md Abdul Kaium, Zhao Yaoli, Datta Shreyan, Paul Puspita, Vasini Shoaib, Thundat Thomas, Liu Peter Q
Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
Small. 2024 Dec;20(50):e2403722. doi: 10.1002/smll.202403722. Epub 2024 Sep 23.
Gallium-based liquid metals (LMs) are widely used for stretchable and reconfigurable electronics thanks to their fluidic nature and excellent conductivity. These LMs possess attractive optical properties for photonics applications as well. However, due to the high surface tension of the LMs, it is challenging to form LM nanostructures with arbitrary shapes using conventional nanofabrication techniques. As a result, LM-based nanophotonics has not been extensively explored. Here, a simple yet effective technique is demonstrated to deterministically fabricate LM nanopatterns with high yield over a large area. This technique demonstrates for the first time the capability to fabricate LM nanophotonic structures of various precisely defined shapes and sizes using two different LMs, that is, liquid gallium and liquid eutectic gallium-indium alloy. High-density arrays of LM nanopatterns with critical feature sizes down to ≈100 nm and inter-pattern spacings down to ≈100 nm are achieved, corresponding to the highest resolution of any LM fabrication technique developed to date. Additionally, the LM nanopatterns demonstrate excellent long-term stability under ambient conditions. This work paves the way toward further development of a wide range of LM nanophotonics technologies and applications.
基于镓的液态金属(LMs)由于其流体性质和优异的导电性,被广泛用于可拉伸和可重构电子器件。这些液态金属对于光子学应用也具有吸引人的光学特性。然而,由于液态金属的高表面张力,使用传统的纳米制造技术来形成任意形状的液态金属纳米结构具有挑战性。因此,基于液态金属的纳米光子学尚未得到广泛探索。在此,展示了一种简单而有效的技术,能够在大面积上高产量地确定性制造液态金属纳米图案。该技术首次展示了使用两种不同的液态金属,即液态镓和液态共晶镓铟合金,制造各种精确限定形状和尺寸的液态金属纳米光子结构的能力。实现了关键特征尺寸低至约100纳米且图案间距低至约100纳米的液态金属纳米图案的高密度阵列,这对应于迄今为止开发的任何液态金属制造技术的最高分辨率。此外,液态金属纳米图案在环境条件下表现出优异的长期稳定性。这项工作为广泛的液态金属纳米光子学技术和应用的进一步发展铺平了道路。