Xing Zhaohui, Jin Guangrong, Du Qing, Pang Peiyuan, Liu Tanghao, Shen Yang, Zhang Dengliang, Yu Bufan, Liang Yue, Yang Dezhi, Tang Jianxin, Wang Lei, Xing Guichuan, Chen Jiangshan, Ma Dongge
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China.
Adv Mater. 2024 Nov;36(46):e2406706. doi: 10.1002/adma.202406706. Epub 2024 Sep 23.
Metal halide perovskites, a cost-effective class of semiconductos, hold great promise for display technologies that demand high-efficiency, color-pure light-emitting diodes (LEDs). Early research on three-dimensional (3D) perovskites showed low radiative efficiencies due to modest exciton binding energies. To inprove luminescence, reducing dimensionality or grain size has been a common approach. However, dividing the perovskite lattice into smaller units may hinder carrier transport, compromising electrical performance. Moreover, the increased surface area introduce additional surface trap states, leading to greater non-radiative recombination. Here, an ions-induced growth method is employed to assembe lattice-anchored perovskite nanocomposites for efficient LEDs with high color purity. This approach enables the nanocomposite thin films, composed of 3D CsPbBr and its variant of zero-dimensional (0D) CsPbBr, to feature significant low trap-assisted nonradiative recombination, enhanced light out-coupling with a corrugated surface, and well-balanced charge carrier transport. Based on the resultant 3D/0D perovskite nanocomposites, the perovskite LEDs (PeLEDs) achieving an remarkable external quantum efficiency of 31.0% at the emission peak of 521 nm with a narrow full width at half-maximum of only 18 nm. This sets a new benchmark for color purity in high performance PeLED research, highlighting the significant advantage of this approach.
金属卤化物钙钛矿是一类具有成本效益的半导体,对于需要高效、色纯发光二极管(LED)的显示技术具有巨大的潜力。早期对三维(3D)钙钛矿的研究表明,由于适度的激子结合能,其辐射效率较低。为了提高发光效率,降低维度或减小晶粒尺寸一直是一种常见的方法。然而,将钙钛矿晶格划分为更小的单元可能会阻碍载流子传输,从而影响电性能。此外,增加的表面积会引入额外的表面陷阱态,导致更大的非辐射复合。在此,采用离子诱导生长方法来组装晶格锚定的钙钛矿纳米复合材料,以制备具有高色纯度的高效LED。这种方法使由3D CsPbBr及其零维(0D)变体CsPbBr组成的纳米复合薄膜具有显著的低陷阱辅助非辐射复合、通过波纹表面增强的光出射耦合以及平衡良好的电荷载流子传输。基于所得的3D/0D钙钛矿纳米复合材料,钙钛矿发光二极管(PeLED)在521 nm发射峰处实现了31.0%的显著外量子效率,半高宽仅为18 nm。这为高性能PeLED研究中的色纯度设定了新的基准,突出了这种方法的显著优势。