Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (B.W., H.L.).
Quantitative Sciences Unit, Department of Medicine (Y.W., S.Z.), Stanford University School of Medicine, CA.
Circ Heart Fail. 2024 Oct;17(10):e011360. doi: 10.1161/CIRCHEARTFAILURE.123.011360. Epub 2024 Sep 23.
Despite a shortage of potential donors for heart transplant in the United States, most potential donor hearts are discarded. We evaluated predictors of donor heart acceptance in the United States and applied machine learning methods to improve prediction.
We included a nationwide (2005-2020) cohort of potential heart donors in the United States (n=73 948) from the Scientific Registry of Transplant Recipients and a more recent (2015-2020) rigorously phenotyped cohort of potential donors from DHS (Donor Heart Study; n=4130). We identified predictors of acceptance for heart transplant in both cohorts using multivariate logistic regression, incorporating time-interaction terms to characterize their varying effects over time. We fit models predicting acceptance for transplant in a 50% training subset of DHS using logistic regression, least absolute shrinkage and selection operator, and random forest algorithms and compared their performance in the remaining 50% (test) of the subset.
Predictors of donor heart acceptance were similar in the nationwide and DHS cohorts. Among these, older age ( value for time interaction, 0.0001) has become increasingly predictive of discard over time while other factors, including those related to drug use, infection, and mild cardiac diagnostic abnormalities, have become less influential ( value for time interaction, <0.05 for all). A random forest model (area under the curve, 0.908; accuracy, 0.831) outperformed other prediction algorithms in the test subset and was used as the basis of a novel web-based prediction tool.
Predictors of donor heart acceptance for transplantation have changed significantly over the last 2 decades, likely reflecting evolving evidence regarding their impact on posttransplant outcomes. Real-time prediction of donor heart acceptance, using our web-based tool, may improve efficiency during donor management and heart allocation.
尽管美国心脏移植的潜在供体短缺,但大多数潜在供体心脏仍被丢弃。我们评估了美国供体心脏接受的预测因素,并应用机器学习方法来提高预测能力。
我们纳入了来自美国器官获取和移植网络(Scientific Registry of Transplant Recipients)的一个全国性(2005-2020 年)潜在供体心脏队列(n=73948)和一个来自 DHS(Donor Heart Study)的更近期(2015-2020 年)严格表型化的潜在供体队列(n=4130)。我们使用多变量逻辑回归在两个队列中识别心脏移植接受的预测因素,并纳入时间交互项以描述其随时间的变化影响。我们使用逻辑回归、最小绝对值收缩和选择算子以及随机森林算法在 DHS 的 50%训练子集中拟合接受移植的模型,并在该子集的其余 50%(测试)中比较它们的性能。
全国性和 DHS 队列中供体心脏接受的预测因素相似。其中,年龄较大(value for time interaction,0.0001)随时间推移越来越成为丢弃的预测因素,而其他因素,包括与药物使用、感染和轻度心脏诊断异常有关的因素,影响力降低(value for time interaction,所有因素均<0.05)。随机森林模型(曲线下面积,0.908;准确性,0.831)在测试子集中优于其他预测算法,并被用作一个新的基于网络的预测工具的基础。
在过去的 20 年中,心脏移植供体接受的预测因素发生了显著变化,这可能反映了有关其对移植后结局影响的不断发展的证据。使用我们的基于网络的工具实时预测供体心脏接受度,可能会提高供体管理和心脏分配的效率。