Drotárová Lenka, Slámečka Karel, Balint Tomáš, Remešová Michaela, Hudák Radovan, Živčák Jozef, Schnitzer Marek, Čelko Ladislav, Montufar Edgar B
Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic.
Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, Brno 61669, Czech Republic.
Bioact Mater. 2024 Sep 11;42:519-530. doi: 10.1016/j.bioactmat.2024.08.048. eCollection 2024 Dec.
Biodegradable magnesium implants offer a solution for bone repair without the need for implant removal. However, concerns persist regarding peri-implant gas accumulation, which has limited their widespread clinical acceptance. Consequently, there is a need to minimise the mass of magnesium to reduce the total volume of gas generated around the implants. Incorporating porosity is a direct approach to reducing the mass of the implants, but it also decreases the strength and degradation resistance. This study demonstrates that the infiltration of a calcium phosphate cement into an additively manufactured WE43 Mg alloy scaffold with 75 % porosity, followed by hydrothermal treatment, yields biodegradable magnesium/hydroxyapatite interpenetrating phase composites that generate an order of magnitude less hydrogen gas during degradation than WE43 scaffolds. The enhanced degradation resistance results from magnesium passivation, allowing osteoblast proliferation in indirect contact with composites. Additionally, the composites exhibit a compressive strength 1.8 times greater than that of the scaffolds, falling within the upper range of the compressive strength of cancellous bone. These results emphasise the potential of the new biodegradable interpenetrating phase composites for the fabrication of temporary osteosynthesis devices. Optimizing cement hardening and magnesium passivation during hydrothermal processing is crucial for achieving both high compressive strength and low degradation rate.
可生物降解的镁植入物为骨修复提供了一种无需取出植入物的解决方案。然而,人们对植入物周围气体积聚的担忧依然存在,这限制了它们在临床上的广泛应用。因此,有必要尽量减少镁的质量,以减少植入物周围产生的气体总量。引入孔隙率是降低植入物质量的直接方法,但同时也会降低强度和抗降解性。本研究表明,将磷酸钙水泥渗入具有75%孔隙率的增材制造WE43镁合金支架中,然后进行水热处理,可得到可生物降解的镁/羟基磷灰石互穿相复合材料,其在降解过程中产生的氢气比WE43支架少一个数量级。抗降解性增强源于镁的钝化,使得成骨细胞能够在与复合材料间接接触的情况下增殖。此外,复合材料的抗压强度比支架高1.8倍,处于松质骨抗压强度的上限范围内。这些结果强调了新型可生物降解互穿相复合材料在制造临时骨固定装置方面的潜力。在水热过程中优化水泥硬化和镁的钝化对于实现高抗压强度和低降解率至关重要。