Niccoli Lorenzo, Casano Gilles, Menzildjian Georges, Yulikov Maxim, Robinson Thomas, Akrial Salah-Eddine, Wang Zhuoran, Reiter Christian, Purea Armin, Siri Didier, Venkatesh Amrit, Emsley Lyndon, Gajan David, Lelli Moreno, Ouari Olivier, Lesage Anne
Centre de RMN à Hauts Champs de Lyon, UMR 5082, Université de Lyon (CNRS/ENS Lyon/UCBL) 5 rue de la Doua Villeurbanne 69100 France
Center of Magnetic Resonance (CERM), University of Florence 50019 Sesto Fiorentino Italy.
Chem Sci. 2024 Sep 12;15(40):16582-93. doi: 10.1039/d4sc04473h.
Dynamic Nuclear Polarization (DNP) can significantly enhance the sensitivity of solid-state NMR. In DNP, microwave irradiation induces polarization transfer from unpaired electron spins to H nuclear spins hyperfine couplings and spin-diffusion. The structure of the polarizing agents that host the electron spins is key for DNP efficiency. Currently, only a handful of structures perform well at very high magnetic fields (≥18.8 T), and enhancements are significantly lower than those obtained at lower fields. Here, we introduce a new series of water-soluble nitroxide biradicals with a scaffold augmented by dihydroxypropyl antenna chains that perform significantly better than previous dinitroxides at 18.8 T. The new radical M-TinyPol(OH) yields enhancement factors of ∼220 at 18.8 T and 60 kHz MAS, which is a nearly factor 2 larger than for the previous best performing dinitroxides. The performance is understood through H ESEEM measurements to probe solvent accessibility, supported by Molecular Dynamics simulations, and by experiments on deuterated samples. We find that the deuterated glycerol molecules in the matrix are located mainly in the second solvation shell of the NO bond, limiting access for protonated water molecules, and restricting spin diffusion pathways. This provides a rational understanding of why the dihydroxypropyl chains present in the best-performing structures are essential to deliver the polarization to the bulk solution.
动态核极化(DNP)可显著提高固态核磁共振的灵敏度。在DNP中,微波辐射通过超精细耦合和自旋扩散诱导未配对电子自旋的极化转移至氢核自旋。承载电子自旋的极化剂结构是影响DNP效率的关键。目前,只有少数几种结构在非常高的磁场(≥18.8 T)下表现良好,且增强效果明显低于在较低磁场下获得的增强效果。在此,我们引入了一系列新的水溶性氮氧双自由基,其骨架由二羟丙基天线链增强,在18.8 T磁场下的表现明显优于先前的二氮氧化物。新型自由基M-TinyPol(OH)在18.8 T和60 kHz MAS条件下产生的增强因子约为220,比先前表现最佳的二氮氧化物高出近2倍。通过H ESEEM测量来探测溶剂可及性,并辅以分子动力学模拟以及对氘代样品的实验,从而理解其性能。我们发现基质中的氘代甘油分子主要位于NO键的第二溶剂化层,限制了质子化水分子的进入,并限制了自旋扩散途径。这为理解为何性能最佳的结构中存在的二羟丙基链对于将极化传递至本体溶液至关重要提供了合理依据。