Laboratory of Chemical Physics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Solid State Nucl Magn Reson. 2011 Sep;40(2):31-41. doi: 10.1016/j.ssnmr.2011.08.001. Epub 2011 Aug 6.
This article provides an overview of polarizing mechanisms involved in high-frequency dynamic nuclear polarization (DNP) of frozen biological samples at temperatures maintained using liquid nitrogen, compatible with contemporary magic-angle spinning (MAS) nuclear magnetic resonance (NMR). Typical DNP experiments require unpaired electrons that are usually exogenous in samples via paramagnetic doping with polarizing agents. Thus, the resulting nuclear polarization mechanism depends on the electron and nuclear spin interactions induced by the paramagnetic species. The Overhauser Effect (OE) DNP, which relies on time-dependent spin-spin interactions, is excluded from our discussion due the lack of conducting electrons in frozen aqueous solutions containing biological entities. DNP of particular interest to us relies primarily on time-independent, spin-spin interactions for significant electron-nucleus polarization transfer through mechanisms such as the Solid Effect (SE), the Cross Effect (CE) or Thermal Mixing (TM), involving one, two or multiple electron spins, respectively. Derived from monomeric radicals initially used in high-field DNP experiments, bi- or multiple-radical polarizing agents facilitate CE/TM to generate significant NMR signal enhancements in dielectric solids at low temperatures (<100 K). For example, large DNP enhancements (∼300 times at 5 T) from a biologically compatible biradical, 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL), have enabled high-resolution MAS NMR in sample systems existing in submicron domains or embedded in larger biomolecular complexes. The scope of this review is focused on recently developed DNP polarizing agents for high-field applications and leads up to future developments per the CE DNP mechanism. Because DNP experiments are feasible with a solid-state microwave source when performed at <20K, nuclear polarization using lower microwave power (<100 mW) is possible by forcing a high proportion of biradicals to fulfill the frequency matching condition of CE (two EPR frequencies separated by the NMR frequency) using the strategies involving hetero-radical moieties and/or molecular alignment. In addition, the combination of an excited triplet and a stable radical might provide alternative DNP mechanisms without the microwave requirement.
本文概述了在使用液氮维持温度的情况下,对冷冻生物样品进行高频动态核极化(DNP)所涉及的极化机制,这与现代魔角旋转(MAS)核磁共振(NMR)兼容。典型的 DNP 实验需要未配对的电子,这些电子通常通过用极化剂进行顺磁掺杂而在样品中外源存在。因此,所得到的核极化机制取决于顺磁物质诱导的电子和核自旋相互作用。由于冷冻水溶液中含有生物实体,缺乏传导电子,因此我们的讨论排除了基于时间依赖性自旋-自旋相互作用的 Overhauser 效应(OE)DNP。我们特别感兴趣的 DNP 主要依赖于时间独立的自旋-自旋相互作用,通过固态效应(SE)、交叉效应(CE)或热混合(TM)等机制,实现电子-核极化转移,这些机制分别涉及一个、两个或多个电子自旋。衍生自最初用于高场 DNP 实验的单体自由基,双自由基或多自由基极化剂促进 CE/TM,在低温(<100 K)下在介电固体中产生显著的 NMR 信号增强。例如,在生物相容的双自由基 1-(TEMPO-4-氧基)-3-(TEMPO-4-氨基)丙-2-醇(TOTAPOL)中,实现了高达 5 T 时约 300 倍的大 DNP 增强,从而在亚微米级域中存在或嵌入较大生物分子复合物的样品系统中实现了高分辨率 MAS NMR。本综述的范围集中在最近开发的用于高场应用的 DNP 极化剂,并根据 CE DNP 机制展望未来的发展。由于在<20 K 下进行时,DNP 实验可以使用固态微波源实现,因此通过使用涉及杂原子自由基部分和/或分子取向的策略,迫使高比例的双自由基满足 CE(两个 EPR 频率被 NMR 频率隔开)的频率匹配条件,可以用较低的微波功率(<100 mW)实现核极化。此外,激发三重态和稳定自由基的组合可能提供无需微波的替代 DNP 机制。