Arruda de Oliveira Geovane, Kim Moonjoo, Santos Carla Santana, Limani Ndrina, Chung Taek Dong, Tetteh Emmanuel Batsa, Schuhmann Wolfgang
Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150 D-44780 Bochum Germany
Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea.
Chem Sci. 2024 Sep 11;15(39):16331-7. doi: 10.1039/d4sc04407j.
Scanning electrochemical cell microscopy (SECCM) has been used to explore structure-electrocatalytic activity relationships through high-resolution mapping of local activities of electrocatalysts. However, utilizing SECCM in strongly alkaline conditions presents a significant challenge due to the high wettability of the alkaline electrolyte leading to a substantial instability of the droplet in contact with the sample surface, and hence to unpredictable wetting and spreading of the electrolyte. The spreading phenomena in SECCM is confirmed by the electrochemical response of a free-diffusing redox probe and finite element method (FEM) simulations. Considering the significance of alkaline electrolytes in electrocatalysis, these wetting issues restrict the application of SECCM for electrocatalyst elucidation in highly alkaline electrolytes. We resolve this issue by incorporating a small percentage of polyvinylpyrrolidone (PVP) in the electrolyte inside the SECCM capillary to increase the surface tension of the electrolyte. To demonstrate successful wetting mitigation and stable SECCM mapping, we performed oxygen evolution reaction (OER) mapping on polycrystalline Pt by using 1 M KOH with an optimized PVP concentration. The OER activity maps correlated with the orientation of the exposed facets determined by electron backscatter diffraction and reveal different activities between Pt facets, hence confirming our methodology for exploring electrocatalytic activities in single facet scale in concentrated alkaline media. Interestingly, the maximum OER current density was highest for (110) and (111) which contradicts the activity trends in acidic electrolyte for which (100) is most active for the OER.
扫描电化学池显微镜(SECCM)已被用于通过对电催化剂局部活性的高分辨率映射来探索结构-电催化活性关系。然而,在强碱性条件下使用SECCM面临重大挑战,因为碱性电解质的高润湿性导致与样品表面接触的液滴极不稳定,进而导致电解质不可预测的润湿和铺展。SECCM中的铺展现象通过自由扩散氧化还原探针的电化学响应和有限元方法(FEM)模拟得到证实。考虑到碱性电解质在电催化中的重要性,这些润湿问题限制了SECCM在高碱性电解质中用于阐明电催化剂的应用。我们通过在SECCM毛细管内的电解质中加入少量聚乙烯吡咯烷酮(PVP)来增加电解质的表面张力,从而解决了这个问题。为了证明成功减轻了润湿并实现了稳定的SECCM映射,我们使用具有优化PVP浓度的1 M KOH对多晶Pt进行了析氧反应(OER)映射。OER活性图与通过电子背散射衍射确定的暴露晶面的取向相关,并揭示了Pt晶面之间的不同活性,从而证实了我们在浓碱性介质中在单晶面尺度上探索电催化活性的方法。有趣的是,(110)和(111)的最大OER电流密度最高,这与酸性电解质中(100)对OER最活跃的活性趋势相矛盾。