Suppr超能文献

mmPose-FK:一种使用毫米波雷达进行动态骨骼姿态估计的正向运动学方法。

mmPose-FK: A Forward Kinematics Approach to Dynamic Skeletal Pose Estimation Using mmWave Radars.

作者信息

Hu Shuting, Cao Siyang, Toosizadeh Nima, Barton Jennifer, Hector Melvin G, Fain Mindy J

机构信息

Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ, 85721 USA.

Department of Rehabilitation and Movement Sciences, Rutgers University, Newark, NJ, 07107 USA.

出版信息

IEEE Sens J. 2024 Mar;24(5):6469-6481. doi: 10.1109/jsen.2023.3348199. Epub 2024 Jan 5.

Abstract

In this paper, we propose mmPose-FK, a novel millimeter wave (mmWave) radar-based pose estimation method that employs a dynamic forward kinematics (FK) approach to address the challenges posed by low resolution, specularity, and noise artifacts commonly associated with mmWave radars. These issues often result in unstable joint poses that vibrate over time, reducing the effectiveness of traditional pose estimation techniques. To overcome these limitations, we integrate the FK mechanism into the deep learning model and develop an end-to-end solution driven by data. Our comprehensive experiments using various matrices and benchmarks highlight the superior performance of mmPose-FK, especially when compared to our previous research methods. The proposed method provides more accurate pose estimation and ensures increased stability and consistency, which underscores the continuous improvement of our methodology, showcasing superior capabilities over its antecedents. Moreover, the model can output joint rotations and human bone lengths, which could be further utilized for various applications such as gait parameter analysis and height estimation. This makes mmPose-FK a highly promising solution for a wide range of applications in the field of human pose estimation and beyond.

摘要

在本文中,我们提出了mmPose-FK,这是一种基于毫米波(mmWave)雷达的新型姿态估计方法,该方法采用动态正向运动学(FK)方法来应对毫米波雷达常见的低分辨率、镜面反射和噪声伪影所带来的挑战。这些问题常常导致关节姿态不稳定,随时间振动,降低了传统姿态估计技术的有效性。为了克服这些限制,我们将FK机制集成到深度学习模型中,并开发了一种由数据驱动的端到端解决方案。我们使用各种矩阵和基准进行的全面实验突出了mmPose-FK的卓越性能,特别是与我们之前的研究方法相比。所提出的方法提供了更准确的姿态估计,并确保了更高的稳定性和一致性,这强调了我们方法的不断改进,展示了其优于先前方法的卓越能力。此外,该模型可以输出关节旋转和人体骨骼长度,可进一步用于各种应用,如步态参数分析和身高估计。这使得mmPose-FK成为人体姿态估计及其他领域广泛应用中极具前景的解决方案。

相似文献

9
mmYOLOH-p: A Clinically-Oriented mmWave-Based Human Pose Estimation Tool for Unobtrusive Patient Monitoring.
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10781770.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验