Suppr超能文献

基于放射组学的头颈部鳞状细胞癌中转化生长因子-β1表达预测模型

Radiomics-based model for prediction of TGF-β1 expression in head and neck squamous cell carcinoma.

作者信息

Qin Kai, Gong Chen, Cheng Yi, Li Li, Liu Chengxia, Yang Feng, Rao Jie, Li Qianxia

机构信息

Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China.

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China.

出版信息

Am J Nucl Med Mol Imaging. 2024 Aug 25;14(4):239-252. doi: 10.62347/JMKV7596. eCollection 2024.

Abstract

OBJECTIVE

To explore the connection between TGF-β1 expression and the survival of patients with head and neck squamous cell carcinoma (HNSCC), as well as whether non-invasive CT-based Radiomics can predict TGF-β1 expression in HNSCC patients.

METHODS

Data on transcriptional profiling and clinical information were acquired from the TCGA database and subsequently categorized based on the TGF-β1 expression cutoff value. Based on the completeness of enhanced arterial phase CT scans, 139 HNSCC patients were selected. The PyRadiomics package was used to extract radiomic features, and the 3D Slicer software was used for image segmentation. Using the mRMR_RFE and Repeat LASSO algorithms, the optimal features for establishing the corresponding gradient enhancement prediction models were identified.

RESULTS

A survival analysis was performed on 483 patients, who were divided into two groups based on the TGF-β1 expression cut-off. The Kaplan-Meier curve indicated that TGF-β1 was a significant independent risk factor that reduced patient survival. To construct gradient enhancement prediction models, we used the mRMR_RFE algorithm and the Repeat_LASSO algorithm to obtain two features (glrlm and ngtdm) and three radiation features (glrlm, first order_10percentile, and gldm). In both the training and validation cohorts, the two established models demonstrated strong predictive potential. Furthermore, there was no statistically significant difference in the calibration curve, DCA diagram, or AUC values between the mRMR_RFE_GBM model and the LASSO_GBM model, suggesting that both models fit well.

CONCLUSION

Based on these findings, TGF-β1 was shown to be significantly associated with a poor prognosis and to be a potential risk factor for HNSCC. Furthermore, by employing the mRMR_RFE_GBM and Repeat_LASSO_GBM models, we were able to effectively predict TGF-β1 expression levels in HNSCC through non-invasive CT-based Radiomics.

摘要

目的

探讨转化生长因子-β1(TGF-β1)表达与头颈部鳞状细胞癌(HNSCC)患者生存率之间的联系,以及基于非侵入性CT的放射组学能否预测HNSCC患者的TGF-β1表达。

方法

从TCGA数据库获取转录谱和临床信息数据,随后根据TGF-β1表达临界值进行分类。基于增强动脉期CT扫描的完整性,选择了139例HNSCC患者。使用PyRadiomics软件包提取放射组学特征,并使用3D Slicer软件进行图像分割。采用mRMR_RFE和重复LASSO算法,确定建立相应梯度增强预测模型的最佳特征。

结果

对483例患者进行生存分析,根据TGF-β1表达临界值将其分为两组。Kaplan-Meier曲线表明,TGF-β1是降低患者生存率的显著独立危险因素。为构建梯度增强预测模型,我们使用mRMR_RFE算法和重复LASSO算法获得了两个特征(glrlm和ngtdm)和三个放射特征(glrlm、一阶10%百分位数和gldm)。在训练和验证队列中,两个建立的模型均显示出强大的预测潜力。此外,mRMR_RFE_GBM模型和LASSO_GBM模型在校准曲线、DCA图或AUC值方面无统计学显著差异,表明两个模型拟合良好。

结论

基于这些发现,TGF-β1与预后不良显著相关,是HNSCC的潜在危险因素。此外,通过采用mRMR_RFE_GBM和重复LASSO_GBM模型,我们能够通过基于非侵入性CT的放射组学有效预测HNSCC患者的TGF-β1表达水平。

相似文献

本文引用的文献

9
Radiomics in Oncology: A Practical Guide.肿瘤放射组学:实用指南。
Radiographics. 2021 Oct;41(6):1717-1732. doi: 10.1148/rg.2021210037.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验