Ibrahim Al-Wesabi, Hussein Farh Hassan M, Fang Zhijian, Al-Shamma'a Abdullrahman A, Xu Jiazhu, Alaql Fahad, Alfraidi Walied, Zafar Muhammad Hamza
College of Electrical and Information Engineering in Hunan University, Hunan, 410083, China.
Electrical Engineering Department, College of Engineering, Imam Mohammad Ibn Saud Islamic University, Saudi Arabia.
Heliyon. 2024 Sep 6;10(18):e37458. doi: 10.1016/j.heliyon.2024.e37458. eCollection 2024 Sep 30.
This study introduces a novel technique for achieving the global peak (GP) in solar photovoltaic (PV) systems under partial shadowing conditions (PSC) using the Dandelion Optimizer Algorithm (DOA), inspired by the dispersal of dandelion seeds in the wind. The proposed approach aims to enhance the power generation efficiency of PV systems across various scenarios, including dynamic uniform, dynamic PSCs, static uniform irradiances, and static PSCs. The proposed approach improves tracking efficiency, provides non-oscillatory steady-state responses, and reduces transients as well as enhancing the dynamic performance of the whole system. Simulation and hardware-in-loop (HIL) experiments demonstrate that the DOA outperforms several state-of-the-art techniques, such as hybrid grey wolf optimizer since-cosine algorithm (HGWOSCA), grasshopper optimization algorithm (GOA), dragonfly optimizer (DFO), particle swarm optimizer with gravitational search (PSOGS), PSO, cuckoo search algorithm (CSA), perturb &observe (P&O), and incremental conductance (INC), achieving average efficiencies of 99.93 %, 88.84 %, 94.48 %, 87.12 %, 88.05 %, 94.79 %, 93.82 %, 85.25 %, and 77.93 %, respectively. These results underscore the DOA's effectiveness in improving maximum power point tracking (MPPT) performance in solar arrays, particularly under challenging dynamic PSC conditions.
本研究引入了一种新颖的技术,该技术受蒲公英种子随风飘散的启发,利用蒲公英优化算法(DOA)在部分阴影条件(PSC)下实现太阳能光伏(PV)系统的全局峰值(GP)。所提出的方法旨在提高光伏系统在各种场景下的发电效率,包括动态均匀、动态PSC、静态均匀辐照度和静态PSC。该方法提高了跟踪效率,提供了非振荡稳态响应,减少了瞬态响应,并增强了整个系统的动态性能。仿真和硬件在环(HIL)实验表明,DOA优于几种先进技术,如混合灰狼优化自余弦算法(HGWOSCA)、蚱蜢优化算法(GOA)、蜻蜓优化算法(DFO)、带引力搜索的粒子群优化算法(PSOGS)、PSO、布谷鸟搜索算法(CSA)、扰动观察(P&O)和增量电导(INC),其平均效率分别为99.93%、88.84%、94.48%、87.12%、88.05%、94.79%、93.82%、85.25%和77.93%。这些结果强调了DOA在提高太阳能阵列最大功率点跟踪(MPPT)性能方面的有效性,特别是在具有挑战性的动态PSC条件下。