Suppr超能文献

一种用于光伏电池充电系统的基于高速最大功率点跟踪的马群优化算法与动态线性自抗扰控制

A high-speed MPPT based horse herd optimization algorithm with dynamic linear active disturbance rejection control for PV battery charging system.

作者信息

Ibrahim Al-Wesabi, Xu Jiazhu, Aboudrar Imad, Alwesabi Khaled, Danhu Li, Al Garni Hassan Z, Mammeri Elhachemi, Kotb Hossam, Bajaj Mohit, Dost Mohammadi Shir Ahmad

机构信息

College of Electrical and Information Engineering, Hunan University, Hunan, 410083, China.

Engineering and Sustainable Development Research Team, EST of Dakhla, Ibn Zohr University, Dakhla, Morocco.

出版信息

Sci Rep. 2025 Jan 25;15(1):3229. doi: 10.1038/s41598-025-85481-6.

Abstract

This study first proposes an innovative method for optimizing the maximum power extraction from photovoltaic (PV) systems during dynamic and static environmental conditions (DSEC) by applying the horse herd optimization algorithm (HHOA). The HHOA is a bio-inspired technique that mimics the motion cycles of an entire herd of horses. Next, the linear active disturbance rejection control (LADRC) was applied to monitor the HHOA's reference voltage output. The LADRC, known for managing uncertainties and disturbances, improves the anti-interference capacity of the maximum power point tracking (MPPT) technique and speeds up the system's response rate. Then, in comparison to the traditional method (perturb & observe; P&O) and metaheuristic algorithms (conventional particle swarm optimization; CPSO, grasshopper optimization; GHO, and deterministic PSO; DPSO) through DSEC, the simulations results demonstrate that the combination HHOA-LADRC can successfully track the global maximum peak (GMP) with less fluctuations and a quicker convergence time. Finally, the experimental investigation of the proposed HHOA-LADRC was accomplished with the NI PXIE-1071 Hardware-In-Loop (HIL) prototype. The output findings show that the effectiveness of the provided HHOA-LADRC may approach a value higher than 99%, showed a quicker rate of converging and less oscillations in power through the detection mechanism.

摘要

本研究首次提出了一种创新方法,通过应用马群优化算法(HHOA)在动态和静态环境条件(DSEC)下优化光伏(PV)系统的最大功率提取。HHOA是一种受生物启发的技术,它模仿整群马的运动周期。接下来,应用线性自抗扰控制(LADRC)来监测HHOA的参考电压输出。LADRC以管理不确定性和干扰而闻名,它提高了最大功率点跟踪(MPPT)技术的抗干扰能力,并加快了系统的响应速度。然后,通过DSEC与传统方法(扰动观察法;P&O)和元启发式算法(传统粒子群优化;CPSO、蚱蜢优化;GHO和确定性粒子群优化;DPSO)进行比较,仿真结果表明,HHOA-LADRC组合能够成功跟踪全局最大峰值(GMP),波动更小,收敛时间更快。最后,利用NI PXIE-1071硬件在环(HIL)原型对所提出的HHOA-LADRC进行了实验研究。输出结果表明,所提供的HHOA-LADRC的有效性可能接近99%以上的值,通过检测机制显示出更快的收敛速度和更小的功率振荡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f2f/11763065/0f7d733c0837/41598_2025_85481_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验