Martínez-Moro Rut, Vázquez Luis, Pérez María, Del Pozo María, Vilas-Varela Manuel, Castro-Esteban Jesús, Petit-Domínguez M Dolores, Casero Elena, Quintana Carmen
Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente, No. 7, Madrid 28049, Spain.
Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Sor Juana Inés de la Cruz, No. 3, Madrid 28049, Spain.
ACS Omega. 2024 Sep 4;9(37):39242-39252. doi: 10.1021/acsomega.4c06639. eCollection 2024 Sep 17.
In this study, we have developed a nanostructured electrochemical sensor based on modified graphene nanoribbons tailored for the analysis of nonelectroactive compounds via a surface competitive assay. Stigmasterol, a nonelectroactive phytosterol, was selected as a representative case. Chevron-like graphene nanoribbons, chemically synthesized, were immobilized onto glassy carbon electrodes and covalently functionalized to allow the on-surface formation of a supramolecular complex. To this end, the nanoribbons were first modified through a diazotization process by electrochemical reduction of a 4-azidoaniline diazonium salt, leaving the electrode surface with azide groups exposed to solution. Next, the incorporation of a ferrocene group, as a redox probe, was carried out by a click chemistry reaction between ethynylferrocene and these azide groups. Finally, the recognition event leads to the formation of a supramolecular complex between ferrocene and a macrocyclic receptor on the electrode surface. To this end, the receptors cucurbit[7]uril, cucurbit[8]uril, and β-cyclodextrin were evaluated, with the better results obtained with β-cyclodextrin. Atomic force microscopy and scanning electron microscopy measurements were performed for the morphological characterization of the resulting electrochemical platform surface. The ability of β-cyclodextrin to form an inclusion complex with ferrocene or with stigmasterol allows to perform a competitive assay, which translates into the decrease and recovery of the ferrocene electrochemical signal. For stigmasterol determination, a linear concentration range between 200 and 750 μM and a detection limit of 60 μM were obtained, with relative errors and relative standard deviations less than 7.1 and 9.8%, respectively.
在本研究中,我们开发了一种基于修饰石墨烯纳米带的纳米结构电化学传感器,该传感器通过表面竞争分析来分析非电活性化合物。选择豆甾醇(一种非电活性植物甾醇)作为代表性实例。通过化学合成得到的人字形石墨烯纳米带被固定在玻碳电极上,并进行共价功能化,以实现表面超分子复合物的形成。为此,首先通过电化学还原4-叠氮基苯胺重氮盐,通过重氮化过程对纳米带进行修饰,使电极表面的叠氮基团暴露于溶液中。接下来,通过乙炔基二茂铁与这些叠氮基团之间的点击化学反应,引入二茂铁基团作为氧化还原探针。最后,识别事件导致电极表面二茂铁与大环受体之间形成超分子复合物。为此,评估了受体葫芦[7]脲、葫芦[8]脲和β-环糊精,其中β-环糊精获得了更好的结果。对所得电化学平台表面进行了原子力显微镜和扫描电子显微镜测量,以进行形态表征。β-环糊精与二茂铁或豆甾醇形成包合物的能力使得能够进行竞争分析,这转化为二茂铁电化学信号的降低和恢复。对于豆甾醇的测定,获得了200至750μM的线性浓度范围和60μM的检测限,相对误差和相对标准偏差分别小于7.1%和9.8%。