Suppr超能文献

方法揭示了膜受体 PHO36 是合成抗真菌肽的新靶标。

approach revealed the membrane receptor PHO36 as a new target for synthetic anticandidal peptides.

机构信息

Department of Pathology, Faculty of Medicine, Federal University of Ceará, EP 60430-270, Brazil.

Pharmacogenetics Laboratory, Drug Research & Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará 60430-275, Brazil.

出版信息

Future Microbiol. 2024;19(17):1463-1473. doi: 10.1080/17460913.2024.2398904. Epub 2024 Sep 23.

Abstract

Synthetic antimicrobial peptides (SAMPs) present the potential to fight systemic fungal infections. Here, the PHO36 receptor from was analyzed by tools as a possible target for three anticandidal SAMPs: Alb-PepIII, PepGAT and PepKAA. Molecular docking, dynamics and quantum biochemistry were employed to understand the individual contribution of amino acid residues in the interaction region. The results revealed that SAMPs strongly interact with the PHO36 by multiple high-energy interactions. This is the first study to employ quantum biochemistry to describe the interactions between SAMPs and the PHO36 receptor. This work contributes to understanding and identifying new molecular targets with medical importance that could be used to discover new drugs against systemic fungal infections.

摘要

合成抗菌肽(SAMPs)具有治疗系统性真菌感染的潜力。本研究采用分子对接、动力学和量子生物化学等方法,对来自的 PHO36 受体进行了分析,探讨了其作为三种抗真菌 SAMPs(Alb-PepIII、PepGAT 和 PepKAA)的潜在靶标。该研究旨在理解相互作用区域中氨基酸残基的个体贡献。结果表明,SAMPs 与 PHO36 受体通过多种高能相互作用强烈相互作用。这是首次利用量子生物化学来描述 SAMPs 与 PHO36 受体之间相互作用的研究。这项工作有助于理解和鉴定具有医学重要性的新分子靶标,可用于发现治疗系统性真菌感染的新药。

相似文献

1
approach revealed the membrane receptor PHO36 as a new target for synthetic anticandidal peptides.
Future Microbiol. 2024;19(17):1463-1473. doi: 10.1080/17460913.2024.2398904. Epub 2024 Sep 23.
3
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
5
Transcriptomic insights into adaptation to an anaerobic environment.
Microbiol Spectr. 2025 Jul;13(7):e0302424. doi: 10.1128/spectrum.03024-24. Epub 2025 May 22.
7
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.
8
Anti-Candida albicans natural products, sources of new antifungal drugs: A review.
J Mycol Med. 2017 Mar;27(1):1-19. doi: 10.1016/j.mycmed.2016.10.002. Epub 2016 Nov 11.
9
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.
Acc Chem Res. 2025 Jun 17;58(12):1831-1846. doi: 10.1021/acs.accounts.0c00594. Epub 2025 Jun 3.

本文引用的文献

1
Drug repurposing strategy II: from approved drugs to agri-fungicide leads.
J Antibiot (Tokyo). 2023 Mar;76(3):131-182. doi: 10.1038/s41429-023-00594-2. Epub 2023 Jan 27.
3
Fungal infections: Pathogenesis, antifungals and alternate treatment approaches.
Curr Res Microb Sci. 2022 Apr 27;3:100137. doi: 10.1016/j.crmicr.2022.100137. eCollection 2022.
4
Neutralizing Effect of Synthetic Peptides toward SARS-CoV-2.
ACS Omega. 2022 Apr 28;7(18):16222-16234. doi: 10.1021/acsomega.2c02203. eCollection 2022 May 10.
5
Role of Adiponectin Receptor 1 in Promoting Nitric Oxide-Mediated Flow-Induced Dilation in the Human Microvasculature.
Front Pharmacol. 2022 Apr 4;13:875900. doi: 10.3389/fphar.2022.875900. eCollection 2022.
6
Protein structure predictions to atomic accuracy with AlphaFold.
Nat Methods. 2022 Jan;19(1):11-12. doi: 10.1038/s41592-021-01362-6.
7
In silico methods and tools for drug discovery.
Comput Biol Med. 2021 Oct;137:104851. doi: 10.1016/j.compbiomed.2021.104851. Epub 2021 Sep 8.
8
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验